2024 Roadmap on 2D Topological Insulators

Bent Weber, Michael Fuhrer, X.-L. Sheng, Shengyuan A. Yang, R. Thomale, S. Shamim, L. Molenkamp, David H Cobden, D. Pesin, H. Zandvliet, P. Bampoulis, Ralph Claessen, Fabian Menges, J. Gooth, Claudia Felser, C. Shekhar, Anton Tadich, Mengting Zhao, M. Edmonds, Junxiang Jia, Maciej Bieniek, J. Väyrynen, D. Culcer, Bhaskaran Muralidharan, Muhammad Nadeem
{"title":"2024 Roadmap on 2D Topological Insulators","authors":"Bent Weber, Michael Fuhrer, X.-L. Sheng, Shengyuan A. Yang, R. Thomale, S. Shamim, L. Molenkamp, David H Cobden, D. Pesin, H. Zandvliet, P. Bampoulis, Ralph Claessen, Fabian Menges, J. Gooth, Claudia Felser, C. Shekhar, Anton Tadich, Mengting Zhao, M. Edmonds, Junxiang Jia, Maciej Bieniek, J. Väyrynen, D. Culcer, Bhaskaran Muralidharan, Muhammad Nadeem","doi":"10.1088/2515-7639/ad2083","DOIUrl":null,"url":null,"abstract":"\n 2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin-momentum locked metallic edge states – both helical and chiral – surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps – up to a few hundred meV – promise to enable topology for applications even at room-temperature. Further, the possibility of combing 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7639/ad2083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

2D topological insulators promise novel approaches towards electronic, spintronic, and quantum device applications. This is owing to unique features of their electronic band structure, in which bulk-boundary correspondences enforces the existence of 1D spin-momentum locked metallic edge states – both helical and chiral – surrounding an electrically insulating bulk. Forty years since the first discoveries of topological phases in condensed matter, the abstract concept of band topology has sprung into realization with several materials now available in which sizable bulk energy gaps – up to a few hundred meV – promise to enable topology for applications even at room-temperature. Further, the possibility of combing 2D TIs in heterostructures with functional materials such as multiferroics, ferromagnets, and superconductors, vastly extends the range of applicability beyond their intrinsic properties. While 2D TIs remain a unique testbed for questions of fundamental condensed matter physics, proposals seek to control the topologically protected bulk or boundary states electrically, or even induce topological phase transitions to engender switching functionality. Induction of superconducting pairing in 2D TIs strives to realize non-Abelian quasiparticles, promising avenues towards fault-tolerant topological quantum computing. This roadmap aims to present a status update of the field, reviewing recent advances and remaining challenges in theoretical understanding, materials synthesis, physical characterization and, ultimately, device perspectives.
2024 年二维拓扑绝缘体路线图
二维拓扑绝缘体有望成为电子、自旋电子和量子器件应用的新方法。这是由于它们的电子能带结构具有独特的特征,在这种结构中,块体-边界对应关系强制要求在电绝缘块体周围存在一维自旋动量锁定金属边缘态(包括螺旋态和手性态)。自首次在凝聚态物质中发现拓扑相以来的 40 年间,带拓扑这一抽象概念已在几种材料中得到了实现,这些材料具有相当大的体能隙(高达几百 meV),有望在室温下实现拓扑应用。此外,在异质结构中将二维拓扑结构与多铁物、铁磁体和超导体等功能材料相结合的可能性,大大扩展了其固有特性之外的应用范围。虽然二维拓扑结构仍是基本凝聚态物理问题的独特试验平台,但也有建议试图通过电学方法控制拓扑保护的体态或边界态,甚至诱导拓扑相变以产生开关功能。在二维拓扑结构中诱导超导配对,努力实现非阿贝尔类粒子,是实现容错拓扑量子计算的大有希望的途径。本路线图旨在介绍该领域的最新进展,回顾在理论理解、材料合成、物理表征以及最终的器件前景方面的最新进展和仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信