Modeling and Analysis Data Production of Oil, and Oil and Gas in Indonesia by Using Threshold Vector Error Correction Model

Q2 Pharmacology, Toxicology and Pharmaceutics
Widiarti Widiarti, M. Usman, A. R. Putri, E. Russel
{"title":"Modeling and Analysis Data Production of Oil, and Oil and Gas in Indonesia by Using Threshold Vector Error Correction Model","authors":"Widiarti Widiarti, M. Usman, A. R. Putri, E. Russel","doi":"10.26554/sti.2024.9.1.189-197","DOIUrl":null,"url":null,"abstract":"Data in the fields of finance, business, economics, agriculture, the environment and weather are commonly in the form of time series data. To analyze time series data that involves more than one variable (multivariate), vector autoregressive (VAR) models, vector autoregressive moving average (VARMA) models are generally used. If the variables discussed have cointegration, then the VAR model is modified into a vector error correction model (VECM). The relationship between short-term dynamics and deviation in the VECM model is assumed to be linear. If there is a nonlinear relationship between short-term dynamics and deviation, then a threshold vector error correction model (TVECM) can be used. The variables used in this research consist of oil production and Indonesian oil and gas production from January 2019 to March 2021. The research results show that the best model for data on oil production and oil and gas production is the TVECM 2 Regime model. Based on the TVECM 2 Regime model, further analysis, namely Granger causality and Impulse Response Function are discussed.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.189-197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Data in the fields of finance, business, economics, agriculture, the environment and weather are commonly in the form of time series data. To analyze time series data that involves more than one variable (multivariate), vector autoregressive (VAR) models, vector autoregressive moving average (VARMA) models are generally used. If the variables discussed have cointegration, then the VAR model is modified into a vector error correction model (VECM). The relationship between short-term dynamics and deviation in the VECM model is assumed to be linear. If there is a nonlinear relationship between short-term dynamics and deviation, then a threshold vector error correction model (TVECM) can be used. The variables used in this research consist of oil production and Indonesian oil and gas production from January 2019 to March 2021. The research results show that the best model for data on oil production and oil and gas production is the TVECM 2 Regime model. Based on the TVECM 2 Regime model, further analysis, namely Granger causality and Impulse Response Function are discussed.
利用阈值矢量误差修正模型对印度尼西亚石油和油气生产数据进行建模和分析
金融、商业、经济、农业、环境和天气等领域的数据通常是时间序列数据。要分析涉及一个以上变量(多变量)的时间序列数据,一般会使用向量自回归(VAR)模型、向量自回归移动平均(VARMA)模型。如果讨论的变量存在协整关系,则 VAR 模型会被修改为向量误差修正模型 (VECM)。在 VECM 模型中,短期动态与偏差之间的关系被假定为线性关系。如果短期动态与偏差之间存在非线性关系,则可使用阈值向量误差修正模型(TVECM)。本研究使用的变量包括 2019 年 1 月至 2021 年 3 月的石油产量和印尼石油天然气产量。研究结果表明,石油产量和石油天然气产量数据的最佳模型是 TVECM 2 Regime 模型。在 TVECM 2 时序模型的基础上,讨论了进一步的分析,即格兰杰因果关系和脉冲响应函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信