Global well-posedness for Cauchy problems of Zakharov-Kuznetsov equations on cylindrical spaces

Pub Date : 2024-01-22 DOI:10.58997/ejde.2024.05
Satoshi Osawa, Hideo Takaoka
{"title":"Global well-posedness for Cauchy problems of Zakharov-Kuznetsov equations on cylindrical spaces","authors":"Satoshi Osawa, Hideo Takaoka","doi":"10.58997/ejde.2024.05","DOIUrl":null,"url":null,"abstract":"We study the global well-posedness of the Zakharov-Kuznetsov equation on cylindrical spaces. Our goal is to establish the existence of global-in-time solutions below the energy class. To prove the results, we adapt the I-method to extend the local solutions globally in time. The main tool in our argument is multilinear estimates in the content of Bourgain's spaces. Using modified energies induced \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/05/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the global well-posedness of the Zakharov-Kuznetsov equation on cylindrical spaces. Our goal is to establish the existence of global-in-time solutions below the energy class. To prove the results, we adapt the I-method to extend the local solutions globally in time. The main tool in our argument is multilinear estimates in the content of Bourgain's spaces. Using modified energies induced For more information see https://ejde.math.txstate.edu/Volumes/2024/05/abstr.html
分享
查看原文
圆柱空间上扎哈罗夫-库兹涅佐夫方程的考奇问题的全局好求解性
我们研究了圆柱空间上扎哈罗夫-库兹涅佐夫方程的全局好求解性。我们的目标是建立低于能量级的全局时间解。为了证明这些结果,我们调整了 I 方法,以在时间上扩展局部解。我们论证的主要工具是布尔干空间内容中的多线性估计。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/05/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信