Fractional-order velocity-dilatation-rotation viscoelastic wave equation and numerical solution based on constant-Q model

GEOPHYSICS Pub Date : 2024-01-22 DOI:10.1190/geo2023-0290.1
Guanghui Han, Bing-Shout He, Huixing Zhang, Enjiang Wang
{"title":"Fractional-order velocity-dilatation-rotation viscoelastic wave equation and numerical solution based on constant-Q model","authors":"Guanghui Han, Bing-Shout He, Huixing Zhang, Enjiang Wang","doi":"10.1190/geo2023-0290.1","DOIUrl":null,"url":null,"abstract":"The viscoelastic wave equations based on the constant- Q (CQ) model can accurately describe the amplitude dissipation and phase distortion of waves in anelastic medium. However, only three velocity or displacement components can be obtained directly by solving such equations. Starting from the time-domain second-order displacement viscoelastic wave equation, we derived the decoupled P- and S-wave displacement vector viscoelastic wave equation by using the polarization difference of P- and S- waves propagation in isotropic media. The equation can be transformed into the velocity-dilatation-rotation viscoelastic wave equation containing the first-order temporal derivative and fractional Laplacian operators which can be solved directly by using the staggered-grid finite-difference and pseudo-spectral methods. We use the low-rank decomposition method to approximate the derived mixed space-wavenumber domain fractional Laplacian operators for modeling wave propagation in heterogeneous attenuating medium. We also demonstrated the precision of the proposed equation by comparing the numerical solutions with the analytical solutions. Furthermore, compared with the conventional velocity-stress viscoelastic wave equation, experimental results demonstrate that the proposed equation can separate the pure P- and S-waves from the mixed wavefield during wavefield continuation, but also be decoupled to the equation containing predominantly amplitude attenuation or phase distortion term.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0290.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The viscoelastic wave equations based on the constant- Q (CQ) model can accurately describe the amplitude dissipation and phase distortion of waves in anelastic medium. However, only three velocity or displacement components can be obtained directly by solving such equations. Starting from the time-domain second-order displacement viscoelastic wave equation, we derived the decoupled P- and S-wave displacement vector viscoelastic wave equation by using the polarization difference of P- and S- waves propagation in isotropic media. The equation can be transformed into the velocity-dilatation-rotation viscoelastic wave equation containing the first-order temporal derivative and fractional Laplacian operators which can be solved directly by using the staggered-grid finite-difference and pseudo-spectral methods. We use the low-rank decomposition method to approximate the derived mixed space-wavenumber domain fractional Laplacian operators for modeling wave propagation in heterogeneous attenuating medium. We also demonstrated the precision of the proposed equation by comparing the numerical solutions with the analytical solutions. Furthermore, compared with the conventional velocity-stress viscoelastic wave equation, experimental results demonstrate that the proposed equation can separate the pure P- and S-waves from the mixed wavefield during wavefield continuation, but also be decoupled to the equation containing predominantly amplitude attenuation or phase distortion term.
分数阶速度-扩张-旋转粘弹性波方程及基于常数 Q 模型的数值解法
基于常数 Q(CQ)模型的粘弹性波方程可以精确描述弹性介质中波的振幅耗散和相位畸变。然而,通过求解此类方程只能直接得到三个速度或位移分量。我们从时域二阶位移粘弹性波方程出发,利用 P 波和 S 波在各向同性介质中传播的极化差,推导出了解耦的 P 波和 S 波位移矢量粘弹性波方程。该方程可转化为包含一阶时间导数和分数拉普拉斯算子的速度-膨胀-旋转粘弹性波方程,并可通过交错网格有限差分法和伪谱法直接求解。我们使用低秩分解法来近似求得混合空间-文数域分数拉普拉斯算子,以模拟波在异质衰减介质中的传播。我们还通过比较数值解与分析解,证明了所提出方程的精确性。此外,与传统的速度-应力粘弹性波方程相比,实验结果表明,所提出的方程不仅能在波场延续过程中将纯 P 波和 S 波从混合波场中分离出来,而且还能与主要包含振幅衰减或相位畸变项的方程解耦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信