Tridiagonal Interval Matrix: Exploring New Perspectives and Application

Q2 Pharmacology, Toxicology and Pharmaceutics
Sivakumar Thirupathi, Nirmala Thamaraiselvan
{"title":"Tridiagonal Interval Matrix: Exploring New Perspectives and Application","authors":"Sivakumar Thirupathi, Nirmala Thamaraiselvan","doi":"10.26554/sti.2024.9.1.77-85","DOIUrl":null,"url":null,"abstract":"Tridiagonal interval matrices are relevant in diverse applications, especially in dealing with parameter estimation, optimization and circuit analysis uncertainties. This research paper aims to improve the computational efficiency of obtaining the inverse of a general tridiagonal interval matrix. This matrix is pivotal in electric circuit analysis. We achieve this by employing interval arithmetic operations in the LU decomposition process, enabling effective handling of circuit parameter uncertainties. This approach generates an inverse interval matrix that addresses uncertainties in circuit analyses.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"9 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.77-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Tridiagonal interval matrices are relevant in diverse applications, especially in dealing with parameter estimation, optimization and circuit analysis uncertainties. This research paper aims to improve the computational efficiency of obtaining the inverse of a general tridiagonal interval matrix. This matrix is pivotal in electric circuit analysis. We achieve this by employing interval arithmetic operations in the LU decomposition process, enabling effective handling of circuit parameter uncertainties. This approach generates an inverse interval matrix that addresses uncertainties in circuit analyses.
三对角区间矩阵:探索新视角和新应用
三对角区间矩阵的应用多种多样,特别是在处理参数估计、优化和电路分析不确定性方面。本研究论文旨在提高一般三对角区间矩阵求逆的计算效率。该矩阵在电路分析中至关重要。为此,我们在 LU 分解过程中采用了区间算术运算,从而有效地处理了电路参数的不确定性。这种方法生成的逆区间矩阵可解决电路分析中的不确定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信