TIME SERIES WITH MULTIPLE CHANGE POINTS AND CENSORED OBSERVATIONS

René Castro-Montoya, G. Rodríguez-Yam, Felipe de Jesús Peraza-Garay, José Vidal Jiménez-Ramírez
{"title":"TIME SERIES WITH MULTIPLE CHANGE POINTS AND CENSORED OBSERVATIONS","authors":"René Castro-Montoya, G. Rodríguez-Yam, Felipe de Jesús Peraza-Garay, José Vidal Jiménez-Ramírez","doi":"10.47163/agrociencia.v58i1.2856","DOIUrl":null,"url":null,"abstract":"This article examines a Bayesian model for a nonstationary time series with an unknown number of change points and censored observations. Each segment is assumed to be an autoregressive process with order one. To estimate the number and locations of change points, we use the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. The censored problem is solved by imputing the censored values from a multivariate normal distribution based on the observed part. A numerical example shows that the estimates of the number of change points and their localizations have little bias. Additionally, the estimates are robust to the censoring percentage.","PeriodicalId":502562,"journal":{"name":"Agrociencia","volume":"15 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrociencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47163/agrociencia.v58i1.2856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines a Bayesian model for a nonstationary time series with an unknown number of change points and censored observations. Each segment is assumed to be an autoregressive process with order one. To estimate the number and locations of change points, we use the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. The censored problem is solved by imputing the censored values from a multivariate normal distribution based on the observed part. A numerical example shows that the estimates of the number of change points and their localizations have little bias. Additionally, the estimates are robust to the censoring percentage.
具有多个变化点和普查观测数据的时间序列
本文研究了一个具有未知变化点数量和删减观测值的非平稳时间序列的贝叶斯模型。假定每个分段都是一阶自回归过程。为了估计变化点的数量和位置,我们使用了可逆跃迁马尔可夫链蒙特卡罗(RJMCMC)算法。根据观察到的部分,从多元正态分布中归纳出删减值,从而解决删减问题。一个数值示例表明,变化点数量及其定位的估计值几乎没有偏差。此外,估计值对删减百分比也很稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信