New Insights on the Early Proto-Tethys Subduction History: Evidence from Ages and Petrogenesis of Volcanic Rocks in the Bulunkuole Complex, West Kunlun Orogen
{"title":"New Insights on the Early Proto-Tethys Subduction History: Evidence from Ages and Petrogenesis of Volcanic Rocks in the Bulunkuole Complex, West Kunlun Orogen","authors":"Zhenju Zhou, Yanjing Chen, H. Tang, Yanshuang Wu, Qiugen Li, Zhengle Chen","doi":"10.2113/2024/lithosphere_2023_290","DOIUrl":null,"url":null,"abstract":"\n The Proto-Tethys Ocean has played a significant role in the geological history of Earth. However, ongoing debates persist regarding the timing and polarity of its early subduction. Volcanic rocks associated with iron deposits in the Bulunkuole Complex, West Kunlun Orogen, offer insights into both the complex’s formation age and Proto-Tethys evolution. This study presents newly obtained zircon U–Pb age data (~536 Ma) along with comprehensive whole-rock major and trace element and Sr–Nd–Hf isotope analyses of these volcanic rocks. Our dataset implies that the Bulunkuole Complex partly formed in the early Paleozoic rather than entirely in the Paleoproterozoic, as previously suggested. Geochemically, the volcanic rocks exhibit enrichments in large ion lithophile elements and light rare earth elements, along with depletions in high-field strength elements. They also display elevated initial 87Sr/86Sr values (0.71093, 0.72025) and negative εNd(t) values (−5.13, −6.18), classifying them as continental arc volcanic rocks. These geochemical fingerprints, complemented by zircon εHf(t) values (−12.7 to −1.6), indicate that the parental magmas of the volcanic rocks were produced by partial melting of the lithospheric mantle wedge, which had been metasomatized by subducted sediment-derived melts. The available data, in conjunction with previously published findings, strongly suggest that the Proto-Tethys Ocean subducted southward prior to approximately 536 Ma due to the assembly of Gondwana. Subsequent slab rollback may have resulted in a crustal thinning of 9–25 km during 536–514 Ma. Further shifts in subduction dynamics led to the transition from high-angle subduction to either normal or low-angle subduction, facilitating the formation of a thicker crust ranging from 39 to 70 km between 514 and 448 Ma. This study, therefore, provides valuable insights into the early evolution of the Proto-Tethys Ocean and contributes significantly to our understanding of the tectonic history of the West Kunlun Orogen.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2024/lithosphere_2023_290","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Proto-Tethys Ocean has played a significant role in the geological history of Earth. However, ongoing debates persist regarding the timing and polarity of its early subduction. Volcanic rocks associated with iron deposits in the Bulunkuole Complex, West Kunlun Orogen, offer insights into both the complex’s formation age and Proto-Tethys evolution. This study presents newly obtained zircon U–Pb age data (~536 Ma) along with comprehensive whole-rock major and trace element and Sr–Nd–Hf isotope analyses of these volcanic rocks. Our dataset implies that the Bulunkuole Complex partly formed in the early Paleozoic rather than entirely in the Paleoproterozoic, as previously suggested. Geochemically, the volcanic rocks exhibit enrichments in large ion lithophile elements and light rare earth elements, along with depletions in high-field strength elements. They also display elevated initial 87Sr/86Sr values (0.71093, 0.72025) and negative εNd(t) values (−5.13, −6.18), classifying them as continental arc volcanic rocks. These geochemical fingerprints, complemented by zircon εHf(t) values (−12.7 to −1.6), indicate that the parental magmas of the volcanic rocks were produced by partial melting of the lithospheric mantle wedge, which had been metasomatized by subducted sediment-derived melts. The available data, in conjunction with previously published findings, strongly suggest that the Proto-Tethys Ocean subducted southward prior to approximately 536 Ma due to the assembly of Gondwana. Subsequent slab rollback may have resulted in a crustal thinning of 9–25 km during 536–514 Ma. Further shifts in subduction dynamics led to the transition from high-angle subduction to either normal or low-angle subduction, facilitating the formation of a thicker crust ranging from 39 to 70 km between 514 and 448 Ma. This study, therefore, provides valuable insights into the early evolution of the Proto-Tethys Ocean and contributes significantly to our understanding of the tectonic history of the West Kunlun Orogen.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.