Study on the effects of the processing parameters on the single tracks and the block support structures fabricated by selective laser melting

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Zhang, Kaifei Zhang, Qi Chen, Yuanzhen Pang
{"title":"Study on the effects of the processing parameters on the single tracks and the block support structures fabricated by selective laser melting","authors":"Tao Zhang, Kaifei Zhang, Qi Chen, Yuanzhen Pang","doi":"10.2351/7.0001222","DOIUrl":null,"url":null,"abstract":"In order to prevent the deformation of the part, enhance heat conduction, and establish a stable foundation, additional support structures are typically incorporated beneath the parts during the selective laser melting (SLM) process. These structures are subsequently eliminated once the SLM process is completed, thereby facilitating the attainment of near-net forming. Therefore, their SLM processing parameters should be different from those of the solid parts to obtain the desirable functions and removability. However, there is so far very little research focusing on the optimization of the SLM processing parameters of the support structures compared with the solid objects. In this work, the widely used block support was illustrated as an instance, and an optimization strategy of its SLM processing parameters was provided. The effects of laser power, scanning speed, and layer thickness on the morphology and qualities of single track, support sample, and support tensile sample were systematically investigated. The results showed that the SLM processing parameters have a significant impact on the properties of the block support by regulating the qualities of the single tracks. At last, a group of optimal SLM processing parameters (80 W of laser power, 400 mm/s of scanning speed, 60 μm of layer thickness) was determined for the Ti-6Al-4V titanium alloy, and the corresponding ultimate tensile strength of the support structure reached 416 MPa.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001222","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to prevent the deformation of the part, enhance heat conduction, and establish a stable foundation, additional support structures are typically incorporated beneath the parts during the selective laser melting (SLM) process. These structures are subsequently eliminated once the SLM process is completed, thereby facilitating the attainment of near-net forming. Therefore, their SLM processing parameters should be different from those of the solid parts to obtain the desirable functions and removability. However, there is so far very little research focusing on the optimization of the SLM processing parameters of the support structures compared with the solid objects. In this work, the widely used block support was illustrated as an instance, and an optimization strategy of its SLM processing parameters was provided. The effects of laser power, scanning speed, and layer thickness on the morphology and qualities of single track, support sample, and support tensile sample were systematically investigated. The results showed that the SLM processing parameters have a significant impact on the properties of the block support by regulating the qualities of the single tracks. At last, a group of optimal SLM processing parameters (80 W of laser power, 400 mm/s of scanning speed, 60 μm of layer thickness) was determined for the Ti-6Al-4V titanium alloy, and the corresponding ultimate tensile strength of the support structure reached 416 MPa.
加工参数对选择性激光熔融法制造的单轨和块状支撑结构的影响研究
为了防止零件变形、加强热传导和建立稳定的基础,在选择性激光熔化(SLM)过程中,通常会在零件下方加入额外的支撑结构。SLM 工艺完成后,这些结构将被消除,从而有助于实现近净成形。因此,这些结构的 SLM 加工参数应不同于实体零件的参数,以获得理想的功能和可拆卸性。然而,与实体相比,迄今为止很少有研究关注支撑结构 SLM 加工参数的优化。在这项工作中,以广泛使用的块状支撑为例,介绍了其 SLM 加工参数的优化策略。系统研究了激光功率、扫描速度和层厚度对单轨、支撑样品和支撑拉伸样品的形态和质量的影响。结果表明,SLM 加工参数通过调节单轨的质量,对块状支撑物的性能有显著影响。最后,针对 Ti-6Al-4V 钛合金确定了一组最佳 SLM 加工参数(激光功率 80 W、扫描速度 400 mm/s、层厚 60 μm),相应的支撑结构极限拉伸强度达到 416 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信