Wenhao Wang, Shengqing Li, Junxin Guo, Long Zhao, Shangjing Guo, Yuanda Su, Xiao-Ming Tang
{"title":"Dispersion and attenuation characteristics of obliquely incident SV wave in a fluid-saturated porous rock containing aligned penny-shaped fractures","authors":"Wenhao Wang, Shengqing Li, Junxin Guo, Long Zhao, Shangjing Guo, Yuanda Su, Xiao-Ming Tang","doi":"10.1190/geo2023-0170.1","DOIUrl":null,"url":null,"abstract":"Owing to the complex structural characteristics of aligned fractured rocks with a fluid-saturated porous background, many existing single-wave attenuation mechanism models cannot accurately characterize measuring multiband SV wave data. Moreover, the coupled effect of wave-induced fluid flow between fractures and the background (FB-WIFF) and elastic scattering (ES) from the fractures leads to ambiguity in the elastic response of the SV wave. Using Biots theory and mixed boundary constraints, we derived exact solutions to the scattering problem for a single penny-shaped fracture with an oblique incident SV wave. Furthermore, we developed a theoretical model for a set of aligned fractures by using Foldy's scheme. The numerical results showed that the FB-WIFF, ES of fractures, and their coupling effects were mainly responsible for wave dispersion and attenuation. The FB-WIFF occurs primarily in the low-frequency seismic exploration frequency band, whereas the ES of the fracture surface depends on the relationship between the wavelength and fracture size. In addition, we validated the accuracy and effectiveness of our model by comparing it with an existing interpolation approximation model and previous experimental measurements. The analysis results of this work can explain the acoustic response of SV wave experimental data in different frequency bands and theoretically support fracture detection and characterization.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0170.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the complex structural characteristics of aligned fractured rocks with a fluid-saturated porous background, many existing single-wave attenuation mechanism models cannot accurately characterize measuring multiband SV wave data. Moreover, the coupled effect of wave-induced fluid flow between fractures and the background (FB-WIFF) and elastic scattering (ES) from the fractures leads to ambiguity in the elastic response of the SV wave. Using Biots theory and mixed boundary constraints, we derived exact solutions to the scattering problem for a single penny-shaped fracture with an oblique incident SV wave. Furthermore, we developed a theoretical model for a set of aligned fractures by using Foldy's scheme. The numerical results showed that the FB-WIFF, ES of fractures, and their coupling effects were mainly responsible for wave dispersion and attenuation. The FB-WIFF occurs primarily in the low-frequency seismic exploration frequency band, whereas the ES of the fracture surface depends on the relationship between the wavelength and fracture size. In addition, we validated the accuracy and effectiveness of our model by comparing it with an existing interpolation approximation model and previous experimental measurements. The analysis results of this work can explain the acoustic response of SV wave experimental data in different frequency bands and theoretically support fracture detection and characterization.