{"title":"An Investigation on Uncontrolled and Vortex-Generator Controlled Supersonic Jets","authors":"Paramesh T., Tamal Jana, M. Kaushik","doi":"10.37394/232013.2024.19.2","DOIUrl":null,"url":null,"abstract":"The present study is carried out with a motivation to investigate the axisymmetric supersonic jet both experimentally and computationally. An open jet facility was utilized to carry out the experiments, and the results were compared with computational simulations employing the K-omega SST turbulence model using ANSYS software. It is important to note that, the computational validation has been done incorporating the Rayleigh Pitot formula to match the centerline pressure for the uncontrolled jet, which has not been found in any other validation studies according to the authors’ understanding. Besides, the experimental study is extended with a focus on evaluating the impact of Vortex Generators (VGs) on Mach 1.6 supersonic jets. The aim was to enhance jet mixing, a critical factor for improving engine performance. Various nozzle geometry modifications were explored in the past, but VGs emerged as the most effective method for optimizing jet mixing efficiency. The investigation revealed a substantial decrement in the supersonic jet core length when VGs were introduced at the nozzle exit, especially under favorable pressure gradients. This reduction in the supersonic core emphasized the role of VGs in enhancing mixing efficiency. The study also confirmed that VGs significantly distort wave patterns within the supersonic core, crucial for improved jet mixing. This research signifies the importance of VGs in augmenting the mixing of Mach 1.6 jets, offering the potential for improved jet performance and reduced noise emissions in the aerospace industry.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"125 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2024.19.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The present study is carried out with a motivation to investigate the axisymmetric supersonic jet both experimentally and computationally. An open jet facility was utilized to carry out the experiments, and the results were compared with computational simulations employing the K-omega SST turbulence model using ANSYS software. It is important to note that, the computational validation has been done incorporating the Rayleigh Pitot formula to match the centerline pressure for the uncontrolled jet, which has not been found in any other validation studies according to the authors’ understanding. Besides, the experimental study is extended with a focus on evaluating the impact of Vortex Generators (VGs) on Mach 1.6 supersonic jets. The aim was to enhance jet mixing, a critical factor for improving engine performance. Various nozzle geometry modifications were explored in the past, but VGs emerged as the most effective method for optimizing jet mixing efficiency. The investigation revealed a substantial decrement in the supersonic jet core length when VGs were introduced at the nozzle exit, especially under favorable pressure gradients. This reduction in the supersonic core emphasized the role of VGs in enhancing mixing efficiency. The study also confirmed that VGs significantly distort wave patterns within the supersonic core, crucial for improved jet mixing. This research signifies the importance of VGs in augmenting the mixing of Mach 1.6 jets, offering the potential for improved jet performance and reduced noise emissions in the aerospace industry.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.