FRACTAL ORACLE NUMBERS

Fractals Pub Date : 2024-01-23 DOI:10.1142/s0218348x24500294
Joel Ratsaby
{"title":"FRACTAL ORACLE NUMBERS","authors":"Joel Ratsaby","doi":"10.1142/s0218348x24500294","DOIUrl":null,"url":null,"abstract":"Consider orbits [Formula: see text] of the fractal iterator [Formula: see text], [Formula: see text], that start at initial points [Formula: see text], where [Formula: see text] is the set of all rational complex numbers (their real and imaginary parts are rational) and [Formula: see text] consists of all such [Formula: see text] whose complexity does not exceed some complexity parameter value [Formula: see text] (the complexity of [Formula: see text] is defined as the number of bits that suffice to describe the real and imaginary parts of [Formula: see text] in lowest form). The set [Formula: see text] is a bounded-complexity approximation of the filled Julia set [Formula: see text]. We present a new perspective on fractals based on an analogy with Chaitin’s algorithmic information theory, where a rational complex number [Formula: see text] is the analog of a program [Formula: see text], an iterator [Formula: see text] is analogous to a universal Turing machine [Formula: see text] which executes program [Formula: see text], and an unbounded orbit [Formula: see text] is analogous to an execution of a program [Formula: see text] on [Formula: see text] that halts. We define a real number [Formula: see text] which resembles Chaitin’s [Formula: see text] number, where, instead of being based on all programs [Formula: see text] whose execution on [Formula: see text] halts, it is based on all rational complex numbers [Formula: see text] whose orbits under [Formula: see text] are unbounded. Hence, similar to Chaitin’s [Formula: see text] number, [Formula: see text] acts as a theoretical limit or a “fractal oracle number” that provides an arbitrarily accurate complexity-based approximation of the filled Julia set [Formula: see text]. We present a procedure that, when given [Formula: see text] and [Formula: see text], it uses [Formula: see text] to generate [Formula: see text]. Several numerical examples of sets that estimate [Formula: see text] are presented.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":"130 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider orbits [Formula: see text] of the fractal iterator [Formula: see text], [Formula: see text], that start at initial points [Formula: see text], where [Formula: see text] is the set of all rational complex numbers (their real and imaginary parts are rational) and [Formula: see text] consists of all such [Formula: see text] whose complexity does not exceed some complexity parameter value [Formula: see text] (the complexity of [Formula: see text] is defined as the number of bits that suffice to describe the real and imaginary parts of [Formula: see text] in lowest form). The set [Formula: see text] is a bounded-complexity approximation of the filled Julia set [Formula: see text]. We present a new perspective on fractals based on an analogy with Chaitin’s algorithmic information theory, where a rational complex number [Formula: see text] is the analog of a program [Formula: see text], an iterator [Formula: see text] is analogous to a universal Turing machine [Formula: see text] which executes program [Formula: see text], and an unbounded orbit [Formula: see text] is analogous to an execution of a program [Formula: see text] on [Formula: see text] that halts. We define a real number [Formula: see text] which resembles Chaitin’s [Formula: see text] number, where, instead of being based on all programs [Formula: see text] whose execution on [Formula: see text] halts, it is based on all rational complex numbers [Formula: see text] whose orbits under [Formula: see text] are unbounded. Hence, similar to Chaitin’s [Formula: see text] number, [Formula: see text] acts as a theoretical limit or a “fractal oracle number” that provides an arbitrarily accurate complexity-based approximation of the filled Julia set [Formula: see text]. We present a procedure that, when given [Formula: see text] and [Formula: see text], it uses [Formula: see text] to generate [Formula: see text]. Several numerical examples of sets that estimate [Formula: see text] are presented.
分形甲骨文数
考虑从初始点[公式:见正文]开始的分形迭代器[公式:见正文]、[公式:见正文]的轨道[公式:见正文],其中[公式:见正文]是所有有理复数的集合(它们的实部和虚部都是有理的),[公式:见文本]由所有复杂度不超过某个复杂度参数值[公式:见文本]的[公式:见文本]组成([公式:见文本]的复杂度定义为足以以最低形式描述[公式:见文本]的实部和虚部的比特数)。公式:见正文]集是填充朱利亚集[公式:见正文]的有界复杂度近似集。在这里,有理复数[式:见正文]类似于程序[式:见正文],迭代器[式:见正文]类似于执行程序[式:见正文]的通用图灵机[式:见正文],无界轨道[式:见正文]类似于程序[式:见正文]在[式:见正文]上停止的执行。我们定义一个实数[式:见正文],它类似于柴廷的[式:见正文]数,但它不是基于所有在[式:见正文]上执行停止的程序[式:见正文],而是基于所有在[式:见正文]下轨道无界的有理复数[式:见正文]。因此,与柴廷的[公式:见正文]数类似,[公式:见正文]作为一个理论极限或 "分形神谕数",提供了一个任意精确的基于复杂度的填充朱利亚集[公式:见正文]近似值。我们提出了一个程序,当给定[公式:见正文]和[公式:见正文]时,它使用[公式:见正文]生成[公式:见正文]。我们还给出了几个估算出[公式:见正文]的集合的数字示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信