Three-dimensional Finite Element Model of Three-phase Contact Line Dynamics and Dynamic Contact Angle

Q3 Engineering
K. A. Chekhonin, Victor D. Vlasenko
{"title":"Three-dimensional Finite Element Model of Three-phase Contact Line Dynamics and Dynamic Contact Angle","authors":"K. A. Chekhonin, Victor D. Vlasenko","doi":"10.37394/232013.2024.19.1","DOIUrl":null,"url":null,"abstract":"An unconventional model of three-phase contact liny dynamics is suggested for the numerical solution of the boundary value problem of dipping and spreading. The numerical modeling is conducted with the use of the finite-element method in Lagrange variables. The mathematical model of the process is described by the equation of motion, continuity, and natural boundary conditions on the free surface. To exclude the ity of viscous stresses in the mathematical model on three-phase contact lines (TPCL) there was suggested a gridded model of gliding that takes into consideration peculiarities of dissipative processes in the neighborhood of TPCL at the microlevel. To reduce oscillations of pressure in the neighborhood of TPCL, a finite element is used. The suggested method allows for natural monitoring of free surface and TPCL with an unconventional model for dynamic contact micro-angle. A stable convergent algorithm is suggested that is not dependent on the grid step size and that is tested through the example of a three-dimensional semispherical drop and a drop in the form of a cube. The investigations obtained are compared to well-known experimental and analytical results demonstrating a high efficiency of the suggested model of TPCL dynamics at small values of capillary number.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"17 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2024.19.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

An unconventional model of three-phase contact liny dynamics is suggested for the numerical solution of the boundary value problem of dipping and spreading. The numerical modeling is conducted with the use of the finite-element method in Lagrange variables. The mathematical model of the process is described by the equation of motion, continuity, and natural boundary conditions on the free surface. To exclude the ity of viscous stresses in the mathematical model on three-phase contact lines (TPCL) there was suggested a gridded model of gliding that takes into consideration peculiarities of dissipative processes in the neighborhood of TPCL at the microlevel. To reduce oscillations of pressure in the neighborhood of TPCL, a finite element is used. The suggested method allows for natural monitoring of free surface and TPCL with an unconventional model for dynamic contact micro-angle. A stable convergent algorithm is suggested that is not dependent on the grid step size and that is tested through the example of a three-dimensional semispherical drop and a drop in the form of a cube. The investigations obtained are compared to well-known experimental and analytical results demonstrating a high efficiency of the suggested model of TPCL dynamics at small values of capillary number.
三相接触线动力学和动态接触角的三维有限元模型
提出了一种非常规的三相接触林格动力学模型,用于浸润和扩张边界值问题的数值求解。数值建模采用拉格朗日变量有限元法。该过程的数学模型由自由表面上的运动方程、连续性和自然边界条件描述。为了排除三相接触线(TPCL)数学模型中的粘性应力,建议采用网格滑行模型,该模型考虑了三相接触线附近微观层面耗散过程的特殊性。为了减少 TPCL 附近的压力振荡,使用了有限元。所建议的方法允许使用非传统的动态接触微角度模型对自由表面和 TPCL 进行自然监测。提出了一种不依赖于网格步长的稳定收敛算法,并以三维半球形液滴和立方体液滴为例进行了测试。研究结果与众所周知的实验和分析结果进行了比较,表明所建议的 TPCL 动力学模型在毛细管数较小值时具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信