{"title":"Compact Spice Models for Terafets","authors":"Xueqing Liu, T. Ytterdal, M. Shur","doi":"10.1142/s0129156424500046","DOIUrl":null,"url":null,"abstract":"Field effect transistors (FETs) in plasmonic regimes of operation could detect terahertz (THz) radiation and operate as THz interferometers, spectrometers, frequency-to-digital converters and THz modulators and sources. We report on the development of compact models for Si MOS (Metal-Oxide-semiconductor) and heterostructure-based plasmonic FETs (or TeraFETs) suitable for circuit design in the THz range and based on the multi-segment unified charge control model. This model accounts for the electron inertia effect (by incorporating segmented Drude inductances), for the ballistic field effect mobility, which is proportional to the channel length, for parasitic resistances and capacitances and for the leakage current. It is validated by comparison with experimental data and TCAD simulation results. The model can be used for simulation and optimization of sub-THz and THz detectors. Our simulations use up to 200 segments in the device channel. The results are also in good qualitative agreement with the hydrodynamic simulations. Applications of our model could dramatically reduce astronomical design costs of nanoscale VLSI reaching US$1.5 billion for the 3 nm technological node.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Field effect transistors (FETs) in plasmonic regimes of operation could detect terahertz (THz) radiation and operate as THz interferometers, spectrometers, frequency-to-digital converters and THz modulators and sources. We report on the development of compact models for Si MOS (Metal-Oxide-semiconductor) and heterostructure-based plasmonic FETs (or TeraFETs) suitable for circuit design in the THz range and based on the multi-segment unified charge control model. This model accounts for the electron inertia effect (by incorporating segmented Drude inductances), for the ballistic field effect mobility, which is proportional to the channel length, for parasitic resistances and capacitances and for the leakage current. It is validated by comparison with experimental data and TCAD simulation results. The model can be used for simulation and optimization of sub-THz and THz detectors. Our simulations use up to 200 segments in the device channel. The results are also in good qualitative agreement with the hydrodynamic simulations. Applications of our model could dramatically reduce astronomical design costs of nanoscale VLSI reaching US$1.5 billion for the 3 nm technological node.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.