A NOVEL COMPUTATIONAL APPROACH TO THE LOCAL FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV–KUZNETSOV EQUATION

Fractals Pub Date : 2024-01-23 DOI:10.1142/s0218348x24500269
Kang-Jia Wang, Feng Shi
{"title":"A NOVEL COMPUTATIONAL APPROACH TO THE LOCAL FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV–KUZNETSOV EQUATION","authors":"Kang-Jia Wang, Feng Shi","doi":"10.1142/s0218348x24500269","DOIUrl":null,"url":null,"abstract":"The fractional derivatives have been widely applied in many fields and has attracted widespread attention. This paper extracts a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation (MZKe) with the local fractional derivative (LFD) for the first time. Two special functions, namely, the [Formula: see text] and [Formula: see text] functions that are derived on the basis of the Mittag-Leffler function (MLF) defined on the Cantor set (CS), are employed to construct the auxiliary trial function to look into the exact solutions (ESs). Aided by Yang’s non-differentiable (ND) transformation, six groups of the ND ESs are found. The ND ESs on the CS for [Formula: see text] are depicted graphically. Additionally, as a comparison, the ESs of the classic (3+1)-dimensional MZKe for [Formula: see text] are also illustrated. The outcomes reveal that the derived method is powerful and effective, and can be used to deal with the other local fractional PDEs.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fractional derivatives have been widely applied in many fields and has attracted widespread attention. This paper extracts a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation (MZKe) with the local fractional derivative (LFD) for the first time. Two special functions, namely, the [Formula: see text] and [Formula: see text] functions that are derived on the basis of the Mittag-Leffler function (MLF) defined on the Cantor set (CS), are employed to construct the auxiliary trial function to look into the exact solutions (ESs). Aided by Yang’s non-differentiable (ND) transformation, six groups of the ND ESs are found. The ND ESs on the CS for [Formula: see text] are depicted graphically. Additionally, as a comparison, the ESs of the classic (3+1)-dimensional MZKe for [Formula: see text] are also illustrated. The outcomes reveal that the derived method is powerful and effective, and can be used to deal with the other local fractional PDEs.
局部分式(3+1)维修正扎哈罗夫-库兹涅佐夫方程的新型计算方法
分数导数已在许多领域得到广泛应用,并引起了广泛关注。本文首次提取了具有局部分数导数(LFD)的新分数(3+1)维修正扎哈罗夫-库兹涅佐夫方程(MZKe)。在康托集(Cantor set,CS)上定义的米塔格-勒弗勒函数(Mittag-Leffler function,MLF)的基础上导出的两个特殊函数,即[公式:见正文]和[公式:见正文]函数,被用来构造辅助试函数,以研究精确解(ESs)。在杨氏无差异(ND)变换的辅助下,找到了六组 ND ES。公式:见正文]的 CS 上的 ND ES 用图表表示。此外,作为比较,还展示了[公式:见正文]的经典(3+1)维 MZKe ESs。结果表明,推导出的方法强大而有效,可用于处理其他局部分式 PDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信