ON THE SEMI-DOMAIN SOLITON SOLUTIONS FOR THE FRACTAL (3+1)-DIMENSIONAL GENERALIZED KADOMTSEV–PETVIASHVILI– BOUSSINESQ EQUATION

Fractals Pub Date : 2024-01-23 DOI:10.1142/s0218348x24500245
Kang-Jia Wang, JING-HUA Liu, Feng Shi
{"title":"ON THE SEMI-DOMAIN SOLITON SOLUTIONS FOR THE FRACTAL (3+1)-DIMENSIONAL GENERALIZED KADOMTSEV–PETVIASHVILI– BOUSSINESQ EQUATION","authors":"Kang-Jia Wang, JING-HUA Liu, Feng Shi","doi":"10.1142/s0218348x24500245","DOIUrl":null,"url":null,"abstract":"The aim of this study is to explore some semi-domain soliton solutions for the fractal (3+1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation (GKPBe) within He’s fractal derivative. First, the fractal soliton molecules are plumbed by combining the Hirota equation and fractal two-scale transform. Second, the Bernoulli sub-equation function approach together with the fractal two-scale transform is employed to investigate the other soliton solutions, which include the kink soliton and the rough wave soliton solutions. The impact of the different fractal orders on the physical behaviors of the semi-domain soliton solutions is also discussed graphically. The methods mentioned in this research are expected to provide some new viewpoints on the behaviors of the fractal PDEs.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to explore some semi-domain soliton solutions for the fractal (3+1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation (GKPBe) within He’s fractal derivative. First, the fractal soliton molecules are plumbed by combining the Hirota equation and fractal two-scale transform. Second, the Bernoulli sub-equation function approach together with the fractal two-scale transform is employed to investigate the other soliton solutions, which include the kink soliton and the rough wave soliton solutions. The impact of the different fractal orders on the physical behaviors of the semi-domain soliton solutions is also discussed graphically. The methods mentioned in this research are expected to provide some new viewpoints on the behaviors of the fractal PDEs.
关于分形(3+1)维广义卡多姆采夫-彼得维亚什维利-布西内斯克方程的半域孤子解
本研究旨在探索 He 分形导数内分形 (3+1) 维广义卡多姆采夫-彼得维亚什维利-布西尼斯克方程 (GKPBe) 的一些半域孤子解。首先,通过结合 Hirota 方程和分形双尺度变换,研究了分形孤子分子。其次,利用伯努利子方程函数方法和分形双尺度变换研究了其他孤子解,包括扭结孤子解和粗糙波孤子解。研究还以图形方式讨论了不同分形阶数对半域孤子解物理行为的影响。本研究中提到的方法有望为分形 PDEs 的行为提供一些新观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信