{"title":"Precipitation Estimation Methods Based on BPNN and CNN","authors":"Bo Xu, Qingyuan Guo","doi":"10.1142/s0129156424400020","DOIUrl":null,"url":null,"abstract":"The hydrological cycle in the natural environment plays a crucial role in influencing human societal progress and everyday life, particularly in the realm of agriculture. Precipitation is a vital component of the natural water cycle. In recent years, multiple approaches for estimating rainfall have been developed by researchers to achieve improved results. However, the precision of conventional rainfall estimation techniques remains inconsistent, particularly in instances of heavy rainfall, which can result in considerable errors. Scholars have turned their attention to deep learning techniques, which excel at processing raw data and autonomously identifying model parameters. In this study, we present and compare two deep learning frameworks for precipitation estimation based on BPNN and CNN, in contrast to traditional methods. We also use a real dataset to validate the effectiveness of the deep learning models, and the experimental outcomes indicate that the CNN-based precipitation estimation method outperforms several other models.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrological cycle in the natural environment plays a crucial role in influencing human societal progress and everyday life, particularly in the realm of agriculture. Precipitation is a vital component of the natural water cycle. In recent years, multiple approaches for estimating rainfall have been developed by researchers to achieve improved results. However, the precision of conventional rainfall estimation techniques remains inconsistent, particularly in instances of heavy rainfall, which can result in considerable errors. Scholars have turned their attention to deep learning techniques, which excel at processing raw data and autonomously identifying model parameters. In this study, we present and compare two deep learning frameworks for precipitation estimation based on BPNN and CNN, in contrast to traditional methods. We also use a real dataset to validate the effectiveness of the deep learning models, and the experimental outcomes indicate that the CNN-based precipitation estimation method outperforms several other models.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.