{"title":"Optimal mass of structure with motion described by Sturm-Liouville operator: design and predesign","authors":"B. Belinskiy, Tanner A. Smith","doi":"10.58997/ejde.2024.08","DOIUrl":null,"url":null,"abstract":"We find an optimal design of a structure described by a Sturm-Liouville (S-L) problem with a spectral parameter in the boundary conditions. Using an approach from calculus of variations, we determine a set of critical points of a corresponding mass functional. However, these critical points - which we call predesigns - do not necessarily themselves represent meaningful solutions: it is of course natural to expect a mass to be real and positive. This represents a generalization of previous work on the topic in several ways. First, previous work considered only boundary conditions and S-L coefficients under certain simplifying assumptions. Principally, we do not assume that one of the coefficients vanishes as in the previous work. Finally, we introduce a set of solvability conditions on the S-L problem data, confirming that the corresponding critical points represent meaningful solutions we refer to as designs. Additionally, we present a natural schematic for testing these conditions, as well as suggesting a code and several numerical examples. \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/08/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We find an optimal design of a structure described by a Sturm-Liouville (S-L) problem with a spectral parameter in the boundary conditions. Using an approach from calculus of variations, we determine a set of critical points of a corresponding mass functional. However, these critical points - which we call predesigns - do not necessarily themselves represent meaningful solutions: it is of course natural to expect a mass to be real and positive. This represents a generalization of previous work on the topic in several ways. First, previous work considered only boundary conditions and S-L coefficients under certain simplifying assumptions. Principally, we do not assume that one of the coefficients vanishes as in the previous work. Finally, we introduce a set of solvability conditions on the S-L problem data, confirming that the corresponding critical points represent meaningful solutions we refer to as designs. Additionally, we present a natural schematic for testing these conditions, as well as suggesting a code and several numerical examples.
For more information see https://ejde.math.txstate.edu/Volumes/2024/08/abstr.html