Study of the leaching process for dust chamber sublimates followed by the extraction of niobium and zirconium into solution

A. Yessengaziyev, A. Toishybek, A. Mukangaliyeva, N.N. Abdyldayev, A.A. Yersaiynova
{"title":"Study of the leaching process for dust chamber sublimates followed by the extraction of niobium and zirconium into solution","authors":"A. Yessengaziyev, A. Toishybek, A. Mukangaliyeva, N.N. Abdyldayev, A.A. Yersaiynova","doi":"10.31643/2024/6445.45","DOIUrl":null,"url":null,"abstract":"The material composition of the sublimates from dust chambers in titanium chlorinators has been studied by chemical, X-ray and microprobe analysis methods. Studies of the phase composition of dust chamber sublimates have shown that the object consists of aqueous and anhydrous chloride phases to a greater extent. Two forms of niobium present, such as oxychloride and oxide niobium were found. The presence of zirconium in sublimates has a chloride and oxychloride nature. Experiments for the aqueous leaching of dust chamber sublimates were conducted to determine the optimal process conditions: S:L ratio = 1:8, leaching time = 1 hour, temperature = 25℃. Studies were conducted to choose an acidic reagent for cake leaching followed by the conversion of niobium and zirconium into a solution. A solution consisting of HF+H2SO4 was selected as an acidic reagent for cake leaching. Optimal conditions for the extraction of niobium and zirconium into solution were established, such as 25% [18M HF] +75% [7M H2SO4], S:L ratio = 1:3, temperature = 90 °C, duration of the leaching process = 120 minutes. Under these leaching conditions, the extraction of niobium, zirconium, and titanium into solution was 94.06%, 84.95% and 32.35%, respectively. The elemental and phase composition of the residue from acid leaching of cake were determined.","PeriodicalId":17896,"journal":{"name":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","volume":"52 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31643/2024/6445.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The material composition of the sublimates from dust chambers in titanium chlorinators has been studied by chemical, X-ray and microprobe analysis methods. Studies of the phase composition of dust chamber sublimates have shown that the object consists of aqueous and anhydrous chloride phases to a greater extent. Two forms of niobium present, such as oxychloride and oxide niobium were found. The presence of zirconium in sublimates has a chloride and oxychloride nature. Experiments for the aqueous leaching of dust chamber sublimates were conducted to determine the optimal process conditions: S:L ratio = 1:8, leaching time = 1 hour, temperature = 25℃. Studies were conducted to choose an acidic reagent for cake leaching followed by the conversion of niobium and zirconium into a solution. A solution consisting of HF+H2SO4 was selected as an acidic reagent for cake leaching. Optimal conditions for the extraction of niobium and zirconium into solution were established, such as 25% [18M HF] +75% [7M H2SO4], S:L ratio = 1:3, temperature = 90 °C, duration of the leaching process = 120 minutes. Under these leaching conditions, the extraction of niobium, zirconium, and titanium into solution was 94.06%, 84.95% and 32.35%, respectively. The elemental and phase composition of the residue from acid leaching of cake were determined.
研究尘室升华物的浸出过程,然后将铌和锆提取到溶液中
通过化学、X 射线和微探针分析方法研究了钛氯化器尘室升华物的物质组成。对灰尘室升华物的相组成研究表明,物体在较大程度上由水相和无水氯相组成。发现存在两种形式的铌,如氧氯化铌和氧化铌。升华物中的锆具有氯化物和氧氯化锆两种性质。对灰尘室升华物进行了水浸出实验,以确定最佳工艺条件:S:L 比例 = 1:8,浸出时间 = 1 小时,温度 = 25℃。研究选择了一种酸性试剂用于滤饼浸出,然后将铌和锆转化为溶液。选择了一种由 HF+H2SO4 组成的溶液作为滤饼浸出的酸性试剂。确定了将铌和锆萃取到溶液中的最佳条件,如 25% [18M HF] +75% [7M H2SO4],S:L 比 = 1:3,温度 = 90 °C,浸出过程持续时间 = 120 分钟。在这些浸出条件下,溶液中铌、锆和钛的提取率分别为 94.06%、84.95% 和 32.35%。测定了酸浸滤饼残渣的元素和相组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信