Accurate and rapid predictions with explainable graph neural networks for small high-fidelity bandgap datasets

Jianping Xiao, Li Yang, Shuqun Wang
{"title":"Accurate and rapid predictions with explainable graph neural networks for small high-fidelity bandgap datasets","authors":"Jianping Xiao, Li Yang, Shuqun Wang","doi":"10.1088/1361-651x/ad2285","DOIUrl":null,"url":null,"abstract":"\n Accurate and rapid bandgap prediction is a fundamental task in materials science. We propose graph neural networks with transfer learning to overcome the scarcity of training data for high-fidelity bandgap predictions. We also add a perturbation-based component to our framework to improve explainability. The experimental results show that a framework consisting of graph-level pre-training and standard fine-tuning achieves superior performance on all high-fidelity bandgap prediction tasks and training-set sizes. Furthermore, the framework provides a reliable explanation that considers node features together with the graph structure. We also used the framework to screen 105 potential photovoltaic absorber materials.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad2285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and rapid bandgap prediction is a fundamental task in materials science. We propose graph neural networks with transfer learning to overcome the scarcity of training data for high-fidelity bandgap predictions. We also add a perturbation-based component to our framework to improve explainability. The experimental results show that a framework consisting of graph-level pre-training and standard fine-tuning achieves superior performance on all high-fidelity bandgap prediction tasks and training-set sizes. Furthermore, the framework provides a reliable explanation that considers node features together with the graph structure. We also used the framework to screen 105 potential photovoltaic absorber materials.
利用可解释图神经网络对小型高保真带隙数据集进行准确而快速的预测
准确而快速的带隙预测是材料科学的一项基本任务。我们提出了具有迁移学习功能的图神经网络,以克服高保真带隙预测训练数据稀缺的问题。我们还为框架添加了基于扰动的组件,以提高可解释性。实验结果表明,由图级预训练和标准微调组成的框架在所有高保真带隙预测任务和训练集规模上都取得了优异的性能。此外,该框架还提供了可靠的解释,将节点特征与图结构一并考虑。我们还利用该框架筛选了 105 种潜在的光伏吸收材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信