Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I

N.S. Bystrov, A. Emelianov, A. Eremin, P. Yatsenko
{"title":"Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I","authors":"N.S. Bystrov, A. Emelianov, A. Eremin, P. Yatsenko","doi":"10.1515/zpch-2023-0385","DOIUrl":null,"url":null,"abstract":"\n The present work expands previous studies on the kinetics of the n-C3H7I unimolecular decomposition and the thermodynamic properties of n-C3H7I and i-C3H7I molecules, by providing combined experimental and theoretical data on the rate constant for reaction of n-C3H7I + Ar ⇌ n-C3H7 + I + Ar, as well as thermodynamic data for iodopropane isomers, calculated based on the density functional theory. The n-C3H7I dissociation rate constant has been precisely determined in shock-tube experiments by applying atomic resonance absorption spectrometry (ARAS) at the resonance transition wavelength of atomic iodine (183.0 nm) in a temperature range from 830 to 1230 K at a pressure of 3–4 bar. The resulting expression is presented in the Arrhenius form: k\n 1st = 1.17 × 1013exp(−191.4 kJ mol−1/RT) (s−1). Theoretical RRKM/ME calculation of the temperature- and pressure-dependent rate constant and channel branching ratio have been based on quantum chemical calculations and were performed over a wide range of thermodynamic conditions (T = 300–2000 K, p = 10−4 to 102 bar). Additionally, the thermochemistry of the reactions of n-C3H7I dissociation and isomerization has been calculated on B3LYP/cc-pVTZ-PP level of theory. Thermodynamic data, which are provided in NASA polynomial format, are in a better agreement with the available experimental data and previous theoretical estimates.","PeriodicalId":23847,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"12 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work expands previous studies on the kinetics of the n-C3H7I unimolecular decomposition and the thermodynamic properties of n-C3H7I and i-C3H7I molecules, by providing combined experimental and theoretical data on the rate constant for reaction of n-C3H7I + Ar ⇌ n-C3H7 + I + Ar, as well as thermodynamic data for iodopropane isomers, calculated based on the density functional theory. The n-C3H7I dissociation rate constant has been precisely determined in shock-tube experiments by applying atomic resonance absorption spectrometry (ARAS) at the resonance transition wavelength of atomic iodine (183.0 nm) in a temperature range from 830 to 1230 K at a pressure of 3–4 bar. The resulting expression is presented in the Arrhenius form: k 1st = 1.17 × 1013exp(−191.4 kJ mol−1/RT) (s−1). Theoretical RRKM/ME calculation of the temperature- and pressure-dependent rate constant and channel branching ratio have been based on quantum chemical calculations and were performed over a wide range of thermodynamic conditions (T = 300–2000 K, p = 10−4 to 102 bar). Additionally, the thermochemistry of the reactions of n-C3H7I dissociation and isomerization has been calculated on B3LYP/cc-pVTZ-PP level of theory. Thermodynamic data, which are provided in NASA polynomial format, are in a better agreement with the available experimental data and previous theoretical estimates.
正-C3H7I 的单分子解离动力学和热力学
本研究扩展了之前关于 n-C3H7I 单分子分解动力学以及 n-C3H7I 和 i-C3H7I 分子热力学性质的研究,提供了 n-C3H7I + Ar ⇌ n-C3H7 + I + Ar 反应速率常数的实验和理论综合数据,以及基于密度泛函理论计算的碘丙烷异构体的热力学数据。通过原子共振吸收光谱法(ARAS),在原子碘的共振转变波长(183.0 nm)、830 至 1230 K 的温度范围和 3-4 bar 的压力下,在冲击管实验中精确测定了 n-C3H7I 的解离速率常数。得出的表达式为阿伦尼乌斯形式:k 1st = 1.17 × 1013exp(-191.4 kJ mol-1/RT) (s-1)。与温度和压力有关的速率常数和通道支化率的 RRKM/ME 理论计算基于量子化学计算,并在广泛的热力学条件下进行(T = 300-2000 K,p = 10-4 至 102 bar)。此外,还在 B3LYP/cc-pVTZ-PP 理论水平上计算了 n-C3H7I 离解和异构化反应的热化学过程。以 NASA 多项式格式提供的热力学数据与现有的实验数据和以前的理论估计值比较一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信