Lin Shi, Adam R. Brandt, Dan Iancu, Katharine J. Mach, Christopher Field, Mu-Jung Cho, Michelle Ng, Kyung Jin (Sarah) Chey, Nilam Ram, Tom Robinson, Byron Reeves
{"title":"Climate impacts of digital use supply chains","authors":"Lin Shi, Adam R. Brandt, Dan Iancu, Katharine J. Mach, Christopher Field, Mu-Jung Cho, Michelle Ng, Kyung Jin (Sarah) Chey, Nilam Ram, Tom Robinson, Byron Reeves","doi":"10.1088/2752-5295/ad22eb","DOIUrl":null,"url":null,"abstract":"\n Information and communications technology (ICT) has become an indispensable part of our lives. Prior research on climate impact of ICT devices and services climate impact have largely focused on the embodied carbon emissions using life cycle assessment (LCA) and energy modeling frameworks. These perspectives view mainly emphasize the carbon emissions associated with the construction and distribution of digital devices along production supply chains. However, the carbon emissions monitored or facilitated by digital device use is largely under studied. In this study, we propose the concept of Digital Use Supply Chains (DUSC) as an orthogonal dimension of digital devices’ life cycle. DUSC refers to the production activities and resource consumption recorded or induced using digital devices. We propose a framework to quantify digital behaviors related greenhouse gas emissions through use of the Screenomics paradigm, where users’ digital screen data are unobtrusively collected moment-by-moment. Through Screenomics’ granular recording of users’ digital behavior, we evaluate behavior-based greenhouse gas emissions traced by the digital devices. The DUSC concept connects individual’s digital behaviors to their global climate change impact, contributing to a more nuanced and complete evaluation of the climate impacts of the digital economy. Our case study indicates the estimated scale of the greenhouse gas emissions linking to digital activities is 3 orders of magnitude higher than the emissions associated with the devices life cycle alone. DUSC could enable climate change mitigation at a meaningful, actionable level through personalized educational or behavior change programs. It also facilitates novel data-driven feedback loops that may provide digital device users with insights into their personal climate impacts. Recognition and future studies of DUSC could accelerate the quantification and standardization of a “carbon handprint” of digital devices and create positive climate impacts from digital products and services.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"46 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad22eb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Information and communications technology (ICT) has become an indispensable part of our lives. Prior research on climate impact of ICT devices and services climate impact have largely focused on the embodied carbon emissions using life cycle assessment (LCA) and energy modeling frameworks. These perspectives view mainly emphasize the carbon emissions associated with the construction and distribution of digital devices along production supply chains. However, the carbon emissions monitored or facilitated by digital device use is largely under studied. In this study, we propose the concept of Digital Use Supply Chains (DUSC) as an orthogonal dimension of digital devices’ life cycle. DUSC refers to the production activities and resource consumption recorded or induced using digital devices. We propose a framework to quantify digital behaviors related greenhouse gas emissions through use of the Screenomics paradigm, where users’ digital screen data are unobtrusively collected moment-by-moment. Through Screenomics’ granular recording of users’ digital behavior, we evaluate behavior-based greenhouse gas emissions traced by the digital devices. The DUSC concept connects individual’s digital behaviors to their global climate change impact, contributing to a more nuanced and complete evaluation of the climate impacts of the digital economy. Our case study indicates the estimated scale of the greenhouse gas emissions linking to digital activities is 3 orders of magnitude higher than the emissions associated with the devices life cycle alone. DUSC could enable climate change mitigation at a meaningful, actionable level through personalized educational or behavior change programs. It also facilitates novel data-driven feedback loops that may provide digital device users with insights into their personal climate impacts. Recognition and future studies of DUSC could accelerate the quantification and standardization of a “carbon handprint” of digital devices and create positive climate impacts from digital products and services.