{"title":"On Modeling Bivariate Lifetime Data in the Presence of Inliers","authors":"Sumangal Bhattacharya, Ishapathik Das, Muralidharan Kunnummal","doi":"10.1007/s40745-023-00511-2","DOIUrl":null,"url":null,"abstract":"<div><p>Many items fail instantaneously or early in life-testing experiments, mainly in electronic parts and clinical trials, due to faulty construction, inferior quality, or non-response to treatments. We record the observed lifetime as zero or near zero, defined as instantaneous or early failure observations. In general, some observations may be concentrated around a point, and others follow some continuous distribution. In data, these kinds of observations are regarded as inliers. Some unimodal parametric distributions, such as Weibull, gamma, log-normal, and Pareto, are usually used to fit the data for analyzing and predicting future events concerning lifetime observations. The usual modelling approach based on uni-modal parametric distributions may not provide the expected results for data with inliers because of the multi-modal nature of the data. The correlated bivariate observations with inliers also frequently occur in life-testing experiments. Here, we propose a method of modelling bivariate lifetime data with instantaneous and early failure observations. A new bivariate distribution is constructed by combining the bivariate uniform and bivariate Weibull distributions. The bivariate Weibull distribution has been obtained by using a 2-dimensional copula, assuming that the marginal distribution is a two-parametric Weibull distribution. An attempt has also been made to derive some properties (viz. joint probability density function, survival (reliability) function, and hazard (failure rate) function) of the modified bivariate Weibull distribution so obtained. The model’s unknown parameters have been estimated using a combination of the Maximum Likelihood Estimation technique and machine learning clustering algorithm, viz. Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Numerical examples are provided using simulated data to illustrate and test the performance of the proposed methodologies. Relevant codes and necessary computations have been developed using R and Python languages. The proposed method has been applied to real data with possible inflation. It has been observed that the data contain inliers with a probability of 0.57. The study also does a comparison test with the proposed method and the existing method in the literature, wherein it was found that the proposed method provides a significantly better fit than the base model (in literature) with a <i>P</i> value less than 0.0001.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"1 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00511-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Many items fail instantaneously or early in life-testing experiments, mainly in electronic parts and clinical trials, due to faulty construction, inferior quality, or non-response to treatments. We record the observed lifetime as zero or near zero, defined as instantaneous or early failure observations. In general, some observations may be concentrated around a point, and others follow some continuous distribution. In data, these kinds of observations are regarded as inliers. Some unimodal parametric distributions, such as Weibull, gamma, log-normal, and Pareto, are usually used to fit the data for analyzing and predicting future events concerning lifetime observations. The usual modelling approach based on uni-modal parametric distributions may not provide the expected results for data with inliers because of the multi-modal nature of the data. The correlated bivariate observations with inliers also frequently occur in life-testing experiments. Here, we propose a method of modelling bivariate lifetime data with instantaneous and early failure observations. A new bivariate distribution is constructed by combining the bivariate uniform and bivariate Weibull distributions. The bivariate Weibull distribution has been obtained by using a 2-dimensional copula, assuming that the marginal distribution is a two-parametric Weibull distribution. An attempt has also been made to derive some properties (viz. joint probability density function, survival (reliability) function, and hazard (failure rate) function) of the modified bivariate Weibull distribution so obtained. The model’s unknown parameters have been estimated using a combination of the Maximum Likelihood Estimation technique and machine learning clustering algorithm, viz. Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Numerical examples are provided using simulated data to illustrate and test the performance of the proposed methodologies. Relevant codes and necessary computations have been developed using R and Python languages. The proposed method has been applied to real data with possible inflation. It has been observed that the data contain inliers with a probability of 0.57. The study also does a comparison test with the proposed method and the existing method in the literature, wherein it was found that the proposed method provides a significantly better fit than the base model (in literature) with a P value less than 0.0001.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.