Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation

Ruixuan Chen, Linfeng Sui, Mo Xia, Jinsha Liu, Tao Zhang, Jianting Cao
{"title":"Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation","authors":"Ruixuan Chen, Linfeng Sui, Mo Xia, Jinsha Liu, Tao Zhang, Jianting Cao","doi":"10.24297/ijct.v24i.9567","DOIUrl":null,"url":null,"abstract":"Sleep is a necessary process that individuals undergo daily for physical recovery, and the proportion of deep sleep in the sleep stages is a critical aspect of the recovery process. Convolutional Neural Networks (CNNs) have shown remarkable success in automatically identifying deep sleep stages through the analysis of electroencephalogram (EEG) signals. This article introduces three data augmentation techniques, including time shifting, amplitude scaling and noise addition, to enhance the diversity and features of the data. These techniques aim to enable machine learning models to extract features from various aspects of sleep EEG data, thus improving the model’s accuracy. Three deep learning models are introduced, namely DeepConvNet, ShallowConvNet and EEGNet, for the identification of deep sleep. To evaluate the proposed methods, the Sleep-EDF public dataset was utilized. Experimental results demonstrate that the enhanced dataset formed by applying the three data augmentation techniques achieved higher accuracy in all deep learning models compared to the original dataset. This highlights the feasibility and effectiveness of these methods in deep sleep detection.","PeriodicalId":210853,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"6 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/ijct.v24i.9567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep is a necessary process that individuals undergo daily for physical recovery, and the proportion of deep sleep in the sleep stages is a critical aspect of the recovery process. Convolutional Neural Networks (CNNs) have shown remarkable success in automatically identifying deep sleep stages through the analysis of electroencephalogram (EEG) signals. This article introduces three data augmentation techniques, including time shifting, amplitude scaling and noise addition, to enhance the diversity and features of the data. These techniques aim to enable machine learning models to extract features from various aspects of sleep EEG data, thus improving the model’s accuracy. Three deep learning models are introduced, namely DeepConvNet, ShallowConvNet and EEGNet, for the identification of deep sleep. To evaluate the proposed methods, the Sleep-EDF public dataset was utilized. Experimental results demonstrate that the enhanced dataset formed by applying the three data augmentation techniques achieved higher accuracy in all deep learning models compared to the original dataset. This highlights the feasibility and effectiveness of these methods in deep sleep detection.
基于数据增强的卷积神经网络用于深度睡眠检测
睡眠是人每天身体恢复的必要过程,而深度睡眠在睡眠阶段中所占的比例是恢复过程中的一个关键环节。卷积神经网络(CNN)在通过分析脑电图(EEG)信号自动识别深度睡眠阶段方面取得了显著成效。本文介绍了三种数据增强技术,包括时间移动、振幅缩放和噪声添加,以增强数据的多样性和特征。这些技术旨在使机器学习模型能够从睡眠脑电图数据的各个方面提取特征,从而提高模型的准确性。本文引入了三种深度学习模型,即 DeepConvNet、ShallowConvNet 和 EEGNet,用于识别深度睡眠。为了评估所提出的方法,我们使用了 Sleep-EDF 公共数据集。实验结果表明,与原始数据集相比,应用三种数据增强技术形成的增强数据集在所有深度学习模型中都达到了更高的准确度。这凸显了这些方法在深度睡眠检测中的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信