Dynamic Maximal Matching in Clique Networks

Minming Li, Peter Robinson, Xianbin Zhu
{"title":"Dynamic Maximal Matching in Clique Networks","authors":"Minming Li, Peter Robinson, Xianbin Zhu","doi":"10.4230/LIPIcs.ITCS.2024.73","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a maximal matching with a distributed algorithm in the presence of batch-dynamic changes to the graph topology. We assume that a graph of $n$ nodes is vertex-partitioned among $k$ players that communicate via message passing. Our goal is to provide an efficient algorithm that quickly updates the matching even if an adversary determines batches of $\\ell$ edge insertions or deletions. Assuming a link bandwidth of $O(\\beta\\log n)$ bits per round, for a parameter $\\beta \\ge 1$, we first show a lower bound of $\\Omega( \\frac{\\ell\\,\\log k}{\\beta\\,k^2\\log n})$ rounds for recomputing a matching assuming an oblivious adversary who is unaware of the initial (random) vertex partition as well as the current state of the players, and a stronger lower bound of $\\Omega(\\frac{\\ell}{\\beta\\,k\\log n})$ rounds against an adaptive adversary, who may choose any balanced (but not necessarily random) vertex partition initially and who knows the current state of the players. We also present a randomized algorithm that has an initialization time of $O( \\lceil\\frac{n}{\\beta\\,k}\\rceil\\log n )$ rounds, while achieving an update time that that is independent of $n$: In more detail, the update time is $O( \\lceil \\frac{\\ell}{\\beta\\,k} \\rceil \\log(\\beta\\,k))$ against an oblivious adversary, who must fix all updates in advance. If we consider the stronger adaptive adversary, the update time becomes $O( \\lceil \\frac{\\ell}{\\sqrt{\\beta\\,k}}\\rceil \\log(\\beta\\,k))$ rounds.","PeriodicalId":123734,"journal":{"name":"Information Technology Convergence and Services","volume":"1 1","pages":"73:1-73:21"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology Convergence and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITCS.2024.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of computing a maximal matching with a distributed algorithm in the presence of batch-dynamic changes to the graph topology. We assume that a graph of $n$ nodes is vertex-partitioned among $k$ players that communicate via message passing. Our goal is to provide an efficient algorithm that quickly updates the matching even if an adversary determines batches of $\ell$ edge insertions or deletions. Assuming a link bandwidth of $O(\beta\log n)$ bits per round, for a parameter $\beta \ge 1$, we first show a lower bound of $\Omega( \frac{\ell\,\log k}{\beta\,k^2\log n})$ rounds for recomputing a matching assuming an oblivious adversary who is unaware of the initial (random) vertex partition as well as the current state of the players, and a stronger lower bound of $\Omega(\frac{\ell}{\beta\,k\log n})$ rounds against an adaptive adversary, who may choose any balanced (but not necessarily random) vertex partition initially and who knows the current state of the players. We also present a randomized algorithm that has an initialization time of $O( \lceil\frac{n}{\beta\,k}\rceil\log n )$ rounds, while achieving an update time that that is independent of $n$: In more detail, the update time is $O( \lceil \frac{\ell}{\beta\,k} \rceil \log(\beta\,k))$ against an oblivious adversary, who must fix all updates in advance. If we consider the stronger adaptive adversary, the update time becomes $O( \lceil \frac{\ell}{\sqrt{\beta\,k}}\rceil \log(\beta\,k))$ rounds.
克利克网络中的动态最大匹配
我们考虑的问题是,在图拓扑发生批量动态变化的情况下,用分布式算法计算最大匹配。我们假设一个由 $n$ 节点组成的图由 $k$ 玩家通过消息传递进行顶点分区。我们的目标是提供一种高效的算法,即使对手确定成批地插入或删除 $ell$ 边,也能快速更新匹配。假设每轮的链接带宽为 $O(\beta\log n)$ 位,参数为 $beta \ge 1$,我们首先展示了重新计算匹配的下限为 $Omega( \frac{ell\,\log k}{\beta\,k^2\log n})$轮,假设对手是一个遗忘者,不知道初始(随机)顶点分区以及玩家的当前状态、以及一个更强的下限:$\Omega(\frac{ell}\{beta\,k\log n})$轮数来对抗一个自适应对手,这个对手最初可以选择任何平衡的(但不一定是随机的)顶点分割,并且知道玩家的当前状态。我们还提出了一种随机算法,其初始化时间为 $O( \lceil\frac{n}{\beta\,k}\rceil\log n )$ 轮,而更新时间与 $n$ 无关:更详细地说,更新时间为 $O( \lceil \frac{ell}{\beta\,k}\rceil\log n )$ 轮。\rceil \log(\beta\,k))$ 对付一个遗忘对手,他必须提前确定所有更新。如果我们考虑更强的自适应对手,更新时间就会变成 $O( \lceil \frac\{ell}{\sqrt\{beta\,k}}\rceil \log(\beta\,k))$ 轮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信