Diabetic Retinopathy Blood Vessel Detection Using CNN and RNN Techniques

Adithya Kusuma Whardana, Parma Hadi Rentelinggi, Hezkiel Dokta Timothy
{"title":"Diabetic Retinopathy Blood Vessel Detection Using CNN and RNN Techniques","authors":"Adithya Kusuma Whardana, Parma Hadi Rentelinggi, Hezkiel Dokta Timothy","doi":"10.30996/jitcs.8716","DOIUrl":null,"url":null,"abstract":"This research aims to detect diabetic retinopathy using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The main objective is to compare these two methods in detecting the condition. Based on the study’s result after training 10 times on each method, the accuracy results were 92% for the CNN method and 50% for the RNN method. These results show, this study with the dataset used, the CNN method is much more effective in detecting diabetic retinopathy than the RNN method. The CNN method is better due to its ability to extract spatial features from images, which is important in image classification tasks.","PeriodicalId":382744,"journal":{"name":"Journal of Information Technology and Cyber Security","volume":"7 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology and Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30996/jitcs.8716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to detect diabetic retinopathy using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). The main objective is to compare these two methods in detecting the condition. Based on the study’s result after training 10 times on each method, the accuracy results were 92% for the CNN method and 50% for the RNN method. These results show, this study with the dataset used, the CNN method is much more effective in detecting diabetic retinopathy than the RNN method. The CNN method is better due to its ability to extract spatial features from images, which is important in image classification tasks.
利用 CNN 和 RNN 技术检测糖尿病视网膜病变血管
本研究旨在使用卷积神经网络(CNN)和递归神经网络(RNN)检测糖尿病视网膜病变。主要目的是比较这两种方法在检测糖尿病视网膜病变方面的效果。根据每种方法训练 10 次后的研究结果,CNN 方法的准确率为 92%,RNN 方法的准确率为 50%。这些结果表明,就本研究使用的数据集而言,CNN 方法在检测糖尿病视网膜病变方面比 RNN 方法更有效。CNN 方法之所以更好,是因为它能从图像中提取空间特征,这在图像分类任务中非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信