Press Forming/Drawing Molding in the Radiator Support Mold Process of 440 MPa High Strength Steel Sheets

Q4 Engineering
Dong-Hwan Park, T. Lee, H. Kwon
{"title":"Press Forming/Drawing Molding in the Radiator Support Mold Process of 440 MPa High Strength Steel Sheets","authors":"Dong-Hwan Park, T. Lee, H. Kwon","doi":"10.7736/jkspe.023.110","DOIUrl":null,"url":null,"abstract":"This study aimed to develop automotive radiator support parts by applying the press forming/drawing mold technology of 440 MPa high-tensile steel sheets. It is intended to develop a shape structure that does not generate shape and positional accuracy, deformation, wrinkles, or cracks by maintaining strong contact surface pressure on both sides of the blank material and freezing elastic recovery stress. Therefore, quality improvement and high productivity were secured by applying the forming/drawing method of high-strength steel sheets to the radiator support parts.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to develop automotive radiator support parts by applying the press forming/drawing mold technology of 440 MPa high-tensile steel sheets. It is intended to develop a shape structure that does not generate shape and positional accuracy, deformation, wrinkles, or cracks by maintaining strong contact surface pressure on both sides of the blank material and freezing elastic recovery stress. Therefore, quality improvement and high productivity were secured by applying the forming/drawing method of high-strength steel sheets to the radiator support parts.
440 兆帕高强度钢板散热器支架模具工艺中的冲压成型/拉伸成型
本研究旨在应用 440 兆帕高张力钢板的冲压成型/拉伸模具技术,开发汽车散热器支架零件。其目的是通过保持毛坯材料两侧强大的接触面压力和冻结弹性恢复应力,开发不会产生形状和位置精度、变形、皱纹或裂纹的形状结构。因此,将高强度钢板的成型/拉伸方法应用于散热器支撑部件,可确保提高质量和生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Korean Society for Precision Engineering
Journal of the Korean Society for Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
104
期刊介绍: Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信