{"title":"De-noising classification method for financial time series based on ICEEMDAN and wavelet threshold, and its application","authors":"Bing Liu, Huanhuan Cheng","doi":"10.1186/s13634-024-01115-5","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a classification method for financial time series that addresses the significant issue of noise. The proposed method combines improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and wavelet threshold de-noising. The method begins by employing ICEEMDAN to decompose the time series into modal components and residuals. Using the noise component verification approach introduced in this paper, these components are categorized into noisy and de-noised elements. The noisy components are then de-noised using the Wavelet Threshold technique, which separates the non-noise and noise elements. The final de-noised output is produced by merging the non-noise elements with the de-noised components, and the 1-NN (nearest neighbor) algorithm is applied for time series classification. Highlighting its practical value in finance, this paper introduces a two-step stock classification prediction method that combines time series classification with a BP (Backpropagation) neural network. The method first classifies stocks into portfolios with high internal similarity using time series classification. It then employs a BP neural network to predict the classification of stock price movements within these portfolios. Backtesting confirms that this approach can enhance the accuracy of predicting stock price fluctuations.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01115-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a classification method for financial time series that addresses the significant issue of noise. The proposed method combines improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and wavelet threshold de-noising. The method begins by employing ICEEMDAN to decompose the time series into modal components and residuals. Using the noise component verification approach introduced in this paper, these components are categorized into noisy and de-noised elements. The noisy components are then de-noised using the Wavelet Threshold technique, which separates the non-noise and noise elements. The final de-noised output is produced by merging the non-noise elements with the de-noised components, and the 1-NN (nearest neighbor) algorithm is applied for time series classification. Highlighting its practical value in finance, this paper introduces a two-step stock classification prediction method that combines time series classification with a BP (Backpropagation) neural network. The method first classifies stocks into portfolios with high internal similarity using time series classification. It then employs a BP neural network to predict the classification of stock price movements within these portfolios. Backtesting confirms that this approach can enhance the accuracy of predicting stock price fluctuations.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.