{"title":"Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups","authors":"Yifan Liu, Jiangtao Shi","doi":"10.1515/gmj-2024-2001","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>G</jats:italic> be finite groups such that <jats:italic>A</jats:italic> acts coprimely on <jats:italic>G</jats:italic> by automorphisms. We prove that if every self-centralizing non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is <jats:italic>p</jats:italic>-nilpotent or <jats:italic>p</jats:italic>-closed for any prime divisor <jats:italic>p</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2001_eq_0039.png\" /> <jats:tex-math>{|G|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If every self-centralizing non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is solvable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let A and G be finite groups such that A acts coprimely on G by automorphisms. We prove that if every self-centralizing non-nilpotent A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-nilpotent A-invariant subgroup of G is subnormal and G is p-nilpotent or p-closed for any prime divisor p of |G|{|G|}. If every self-centralizing non-metacyclic A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-metacyclic A-invariant subgroup of G is subnormal and G is solvable.
设 A 和 G 都是有限群,且 A 通过自动形共同作用于 G。我们证明,如果 G 的每个自中心化非零能 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非零能 A 不变子群都是子正常的,并且对于 | G | {|G|} 的任何素除数 p,G 都是 p 零能或 p 封闭的。如果 G 的每个自中心化非元胞 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非元胞 A 不变子群都是子正常的,并且 G 是可解的。