ADOLFO BALLESTER-BOLINCHES, SESUAI Y. MADANHA, TENDAI M. MUDZIIRI SHUMBA, MARÍA C. PEDRAZA-AGUILERA
{"title":"GENERALISED MUTUALLY PERMUTABLE PRODUCTS AND SATURATED FORMATIONS, II","authors":"ADOLFO BALLESTER-BOLINCHES, SESUAI Y. MADANHA, TENDAI M. MUDZIIRI SHUMBA, MARÍA C. PEDRAZA-AGUILERA","doi":"10.1017/s0004972723001430","DOIUrl":null,"url":null,"abstract":"<p>A group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G=AB$</span></span></img></span></span> is the weakly mutually permutable product of the subgroups <span>A</span> and <span>B</span>, if <span>A</span> permutes with every subgroup of <span>B</span> containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$A \\cap B$</span></span></img></span></span> and <span>B</span> permutes with every subgroup of <span>A</span> containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A \\cap B$</span></span></img></span></span>. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, <span>J. Algebra</span> <span>595</span> (2022), 434–443] who showed that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G'$</span></span></img></span></span> is nilpotent, <span>A</span> permutes with every Sylow subgroup of <span>B</span> and <span>B</span> permutes with every Sylow subgroup of <span>A</span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G^{\\mathfrak {F}}=A^{\\mathfrak {F}}B^{\\mathfrak {F}} $</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span> is a saturated formation containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {U} $</span></span></img></span></span>, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span>-residuals, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span>-projectors and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {F}$</span></span></img></span></span>-normalisers. As an application of some of our arguments, we unify some results on weakly mutually <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$sn$</span></span></img></span></span>-products.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001430","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, J. Algebra595 (2022), 434–443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}} $, where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $-residuals, $ \mathfrak {F} $-projectors and $\mathfrak {F}$-normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$-products.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society