{"title":"NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN","authors":"PABLO BHOWMIK, FIRDAVS RAKHMONOV","doi":"10.1017/s0004972723001399","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline2.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline3.png\" /> <jats:tex-math> $\\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. Define <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline4.png\" /> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline5.png\" /> <jats:tex-math> $\\alpha = (\\alpha _1, \\dots , \\alpha _d) \\in \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline6.png\" /> <jats:tex-math> $k\\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:italic>A</jats:italic> be a nonempty subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline7.png\" /> <jats:tex-math> $\\{(i, j): 1 \\leq i < j \\leq k + 1\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline8.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus {0}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline9.png\" /> <jats:tex-math> $(\\mathbb {F}_q)^2=\\{a^2:a\\in \\mathbb {F}_q\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline10.png\" /> <jats:tex-math> $E\\subset \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, our main result demonstrates that when the size of the set <jats:italic>E</jats:italic> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline11.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline12.png\" /> <jats:tex-math> $C_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a constant depending solely on <jats:italic>k</jats:italic>, it is possible to find two <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline13.png\" /> <jats:tex-math> $(k+1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuples in <jats:italic>E</jats:italic> such that one of them is dilated by <jats:italic>r</jats:italic> with respect to the other, but only along <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline14.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges. To be more precise, we establish the existence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline15.png\" /> <jats:tex-math> $(x_1, \\dots , x_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline16.png\" /> <jats:tex-math> $(y_1, \\dots , y_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline17.png\" /> <jats:tex-math> $(i, j) \\in A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we have <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline18.png\" /> <jats:tex-math> $\\lVert y_i - y_j \\rVert = r \\lVert x_i - x_j \\rVert $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with the conditions that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline19.png\" /> <jats:tex-math> $x_i \\neq x_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline20.png\" /> <jats:tex-math> $y_i \\neq y_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline21.png\" /> <jats:tex-math> $1 \\leq i < j \\leq k + 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline22.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline23.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline24.png\" /> <jats:tex-math> $d/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is sharp when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline25.png\" /> <jats:tex-math> $q \\equiv 3 \\pmod 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a corollary of the main result, by varying the underlying set <jats:italic>A</jats:italic>, we determine thresholds for the existence of dilated <jats:italic>k</jats:italic>-cycles, <jats:italic>k</jats:italic>-paths and <jats:italic>k</jats:italic>-stars (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline26.png\" /> <jats:tex-math> $k \\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) with a dilation ratio of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline27.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline28.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Finite Fields Appl.</jats:italic>91 (2023), Article no. 102252, 20 pages].","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001399","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $\mathbb {F}_q$ with q elements. Define for $\alpha = (\alpha _1, \dots , \alpha _d) \in \mathbb {F}_q^d$ . Let $k\in \mathbb {N}$ , A be a nonempty subset of $\{(i, j): 1 \leq i < j \leq k + 1\}$ and $r\in (\mathbb {F}_q)^2\setminus {0}$ , where $(\mathbb {F}_q)^2=\{a^2:a\in \mathbb {F}_q\}$ . If $E\subset \mathbb {F}_q^d$ , our main result demonstrates that when the size of the set E satisfies $|E| \geq C_k q^{d/2}$ , where $C_k$ is a constant depending solely on k, it is possible to find two $(k+1)$ -tuples in E such that one of them is dilated by r with respect to the other, but only along $|A|$ edges. To be more precise, we establish the existence of $(x_1, \dots , x_{k+1}) \in E^{k+1}$ and $(y_1, \dots , y_{k+1}) \in E^{k+1}$ such that, for $(i, j) \in A$ , we have $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $ , with the conditions that $x_i \neq x_j$ and $y_i \neq y_j$ for $1 \leq i < j \leq k + 1$ , provided that $|E| \geq C_k q^{d/2}$ and $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold $d/2$ is sharp when $q \equiv 3 \pmod 4$ . As a corollary of the main result, by varying the underlying set A, we determine thresholds for the existence of dilated k-cycles, k-paths and k-stars (where $k \geq 3$ ) with a dilation ratio of $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of $\mathbb {F}_q^d$ ’, Finite Fields Appl.91 (2023), Article no. 102252, 20 pages].
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society