NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN

IF 0.6 4区 数学 Q3 MATHEMATICS
PABLO BHOWMIK, FIRDAVS RAKHMONOV
{"title":"NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN","authors":"PABLO BHOWMIK, FIRDAVS RAKHMONOV","doi":"10.1017/s0004972723001399","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline2.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline3.png\" /> <jats:tex-math> $\\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. Define <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline4.png\" /> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline5.png\" /> <jats:tex-math> $\\alpha = (\\alpha _1, \\dots , \\alpha _d) \\in \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline6.png\" /> <jats:tex-math> $k\\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:italic>A</jats:italic> be a nonempty subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline7.png\" /> <jats:tex-math> $\\{(i, j): 1 \\leq i &lt; j \\leq k + 1\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline8.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus {0}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline9.png\" /> <jats:tex-math> $(\\mathbb {F}_q)^2=\\{a^2:a\\in \\mathbb {F}_q\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline10.png\" /> <jats:tex-math> $E\\subset \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, our main result demonstrates that when the size of the set <jats:italic>E</jats:italic> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline11.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline12.png\" /> <jats:tex-math> $C_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a constant depending solely on <jats:italic>k</jats:italic>, it is possible to find two <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline13.png\" /> <jats:tex-math> $(k+1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuples in <jats:italic>E</jats:italic> such that one of them is dilated by <jats:italic>r</jats:italic> with respect to the other, but only along <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline14.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges. To be more precise, we establish the existence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline15.png\" /> <jats:tex-math> $(x_1, \\dots , x_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline16.png\" /> <jats:tex-math> $(y_1, \\dots , y_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline17.png\" /> <jats:tex-math> $(i, j) \\in A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we have <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline18.png\" /> <jats:tex-math> $\\lVert y_i - y_j \\rVert = r \\lVert x_i - x_j \\rVert $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with the conditions that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline19.png\" /> <jats:tex-math> $x_i \\neq x_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline20.png\" /> <jats:tex-math> $y_i \\neq y_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline21.png\" /> <jats:tex-math> $1 \\leq i &lt; j \\leq k + 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline22.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline23.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline24.png\" /> <jats:tex-math> $d/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is sharp when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline25.png\" /> <jats:tex-math> $q \\equiv 3 \\pmod 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a corollary of the main result, by varying the underlying set <jats:italic>A</jats:italic>, we determine thresholds for the existence of dilated <jats:italic>k</jats:italic>-cycles, <jats:italic>k</jats:italic>-paths and <jats:italic>k</jats:italic>-stars (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline26.png\" /> <jats:tex-math> $k \\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) with a dilation ratio of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline27.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline28.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Finite Fields Appl.</jats:italic>91 (2023), Article no. 102252, 20 pages].","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001399","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $\mathbb {F}_q$ with q elements. Define for $\alpha = (\alpha _1, \dots , \alpha _d) \in \mathbb {F}_q^d$ . Let $k\in \mathbb {N}$ , A be a nonempty subset of $\{(i, j): 1 \leq i < j \leq k + 1\}$ and $r\in (\mathbb {F}_q)^2\setminus {0}$ , where $(\mathbb {F}_q)^2=\{a^2:a\in \mathbb {F}_q\}$ . If $E\subset \mathbb {F}_q^d$ , our main result demonstrates that when the size of the set E satisfies $|E| \geq C_k q^{d/2}$ , where $C_k$ is a constant depending solely on k, it is possible to find two $(k+1)$ -tuples in E such that one of them is dilated by r with respect to the other, but only along $|A|$ edges. To be more precise, we establish the existence of $(x_1, \dots , x_{k+1}) \in E^{k+1}$ and $(y_1, \dots , y_{k+1}) \in E^{k+1}$ such that, for $(i, j) \in A$ , we have $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $ , with the conditions that $x_i \neq x_j$ and $y_i \neq y_j$ for $1 \leq i < j \leq k + 1$ , provided that $|E| \geq C_k q^{d/2}$ and $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold $d/2$ is sharp when $q \equiv 3 \pmod 4$ . As a corollary of the main result, by varying the underlying set A, we determine thresholds for the existence of dilated k-cycles, k-paths and k-stars (where $k \geq 3$ ) with a dilation ratio of $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of $\mathbb {F}_q^d$ ’, Finite Fields Appl.91 (2023), Article no. 102252, 20 pages].
中存在扩张构型的近似最佳阈值
让 $\mathbb {F}_q^d$ 表示有限域 $\mathbb {F}_q$ 上有 q 个元素的 d 维向量空间。在 \mathbb {F}_q^d$ 中定义 $\alpha = (\alpha _1, \dots , \alpha _d) \。让 $k\in \mathbb {N}$ , A 是 $\{(i, j) 的一个非空子集:1 \leq i < j \leq k + 1\}$ 和 $r\in (\mathbb {F}_q)^2setminus {0}$ , 其中 $(\mathbb {F}_q)^2=\{a^2:a in \mathbb {F}_q\}$ .如果 $E\subset \mathbb {F}_q^d$ ,我们的主要结果表明,当集合 E 的大小满足 $|E| \geq C_k q^{d/2}$ 时,其中 $C_k$ 是一个完全取决于 k 的常数,那么就有可能在 E 中找到两个 $(k+1)$ 图元,使得其中一个图元相对于另一个图元扩张了 r,但只沿着 $|A|$ 边。更准确地说,我们确定在 E^{k+1}$ 中存在 $(x_1, \dots , x_{k+1}) \,在 E^{k+1}$ 中存在 $(y_1, \dots , y_{k+1}) \,这样,对于 $(i, j) \in A$ 、我们有 $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $ ,条件是 $x_i \neq x_j$ 和 $y_i \neq y_j$ for $1 \leq i <;j \leq k + 1$ 条件是 $|E| \geq C_k q^{d/2}$ 和 $r\in (\mathbb {F}_q)^2\setminus \{0\}$ 。我们为这一结果提供了两个不同的证明。第一个证明使用了群作用技术,这是解决此类问题的一种强有力的方法;第二个证明则基于基本的组合推理。此外,我们还证明了在维度 2 中,当 $q \equiv 3 \pmod 4$ 时,阈值 $d/2$ 是尖锐的。作为主要结果的推论,通过改变底层集合 A,我们确定了扩张 k 循环、k 路径和 k 星(其中 $k \geq 3$ )存在的阈值,其扩张比为 $r\in (\mathbb {F}_q)^2\setminus \{0\}$ 。这些结果改进并概括了 Xie 和 Ge 的发现['Some results on similar configurations in subsets of $\mathbb {F}_q^d$ ', Finite Fields Appl.91 (2023), Article no.102252, 20 pages].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信