NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN

Pub Date : 2024-01-26 DOI:10.1017/s0004972723001399
PABLO BHOWMIK, FIRDAVS RAKHMONOV
{"title":"NEAR OPTIMAL THRESHOLDS FOR EXISTENCE OF DILATED CONFIGURATIONS IN","authors":"PABLO BHOWMIK, FIRDAVS RAKHMONOV","doi":"10.1017/s0004972723001399","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline2.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the <jats:italic>d</jats:italic>-dimensional vector space over the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline3.png\" /> <jats:tex-math> $\\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>q</jats:italic> elements. Define <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline4.png\" /> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline5.png\" /> <jats:tex-math> $\\alpha = (\\alpha _1, \\dots , \\alpha _d) \\in \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline6.png\" /> <jats:tex-math> $k\\in \\mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:italic>A</jats:italic> be a nonempty subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline7.png\" /> <jats:tex-math> $\\{(i, j): 1 \\leq i &lt; j \\leq k + 1\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline8.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus {0}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline9.png\" /> <jats:tex-math> $(\\mathbb {F}_q)^2=\\{a^2:a\\in \\mathbb {F}_q\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline10.png\" /> <jats:tex-math> $E\\subset \\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, our main result demonstrates that when the size of the set <jats:italic>E</jats:italic> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline11.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline12.png\" /> <jats:tex-math> $C_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a constant depending solely on <jats:italic>k</jats:italic>, it is possible to find two <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline13.png\" /> <jats:tex-math> $(k+1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuples in <jats:italic>E</jats:italic> such that one of them is dilated by <jats:italic>r</jats:italic> with respect to the other, but only along <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline14.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges. To be more precise, we establish the existence of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline15.png\" /> <jats:tex-math> $(x_1, \\dots , x_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline16.png\" /> <jats:tex-math> $(y_1, \\dots , y_{k+1}) \\in E^{k+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline17.png\" /> <jats:tex-math> $(i, j) \\in A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we have <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline18.png\" /> <jats:tex-math> $\\lVert y_i - y_j \\rVert = r \\lVert x_i - x_j \\rVert $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with the conditions that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline19.png\" /> <jats:tex-math> $x_i \\neq x_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline20.png\" /> <jats:tex-math> $y_i \\neq y_j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline21.png\" /> <jats:tex-math> $1 \\leq i &lt; j \\leq k + 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline22.png\" /> <jats:tex-math> $|E| \\geq C_k q^{d/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline23.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline24.png\" /> <jats:tex-math> $d/2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is sharp when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline25.png\" /> <jats:tex-math> $q \\equiv 3 \\pmod 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a corollary of the main result, by varying the underlying set <jats:italic>A</jats:italic>, we determine thresholds for the existence of dilated <jats:italic>k</jats:italic>-cycles, <jats:italic>k</jats:italic>-paths and <jats:italic>k</jats:italic>-stars (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline26.png\" /> <jats:tex-math> $k \\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) with a dilation ratio of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline27.png\" /> <jats:tex-math> $r\\in (\\mathbb {F}_q)^2\\setminus \\{0\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001399_inline28.png\" /> <jats:tex-math> $\\mathbb {F}_q^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Finite Fields Appl.</jats:italic>91 (2023), Article no. 102252, 20 pages].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $\mathbb {F}_q$ with q elements. Define for $\alpha = (\alpha _1, \dots , \alpha _d) \in \mathbb {F}_q^d$ . Let $k\in \mathbb {N}$ , A be a nonempty subset of $\{(i, j): 1 \leq i < j \leq k + 1\}$ and $r\in (\mathbb {F}_q)^2\setminus {0}$ , where $(\mathbb {F}_q)^2=\{a^2:a\in \mathbb {F}_q\}$ . If $E\subset \mathbb {F}_q^d$ , our main result demonstrates that when the size of the set E satisfies $|E| \geq C_k q^{d/2}$ , where $C_k$ is a constant depending solely on k, it is possible to find two $(k+1)$ -tuples in E such that one of them is dilated by r with respect to the other, but only along $|A|$ edges. To be more precise, we establish the existence of $(x_1, \dots , x_{k+1}) \in E^{k+1}$ and $(y_1, \dots , y_{k+1}) \in E^{k+1}$ such that, for $(i, j) \in A$ , we have $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $ , with the conditions that $x_i \neq x_j$ and $y_i \neq y_j$ for $1 \leq i < j \leq k + 1$ , provided that $|E| \geq C_k q^{d/2}$ and $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold $d/2$ is sharp when $q \equiv 3 \pmod 4$ . As a corollary of the main result, by varying the underlying set A, we determine thresholds for the existence of dilated k-cycles, k-paths and k-stars (where $k \geq 3$ ) with a dilation ratio of $r\in (\mathbb {F}_q)^2\setminus \{0\}$ . These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of $\mathbb {F}_q^d$ ’, Finite Fields Appl.91 (2023), Article no. 102252, 20 pages].
分享
查看原文
中存在扩张构型的近似最佳阈值
让 $\mathbb {F}_q^d$ 表示有限域 $\mathbb {F}_q$ 上有 q 个元素的 d 维向量空间。在 \mathbb {F}_q^d$ 中定义 $\alpha = (\alpha _1, \dots , \alpha _d) \。让 $k\in \mathbb {N}$ , A 是 $\{(i, j) 的一个非空子集:1 \leq i < j \leq k + 1\}$ 和 $r\in (\mathbb {F}_q)^2setminus {0}$ , 其中 $(\mathbb {F}_q)^2=\{a^2:a in \mathbb {F}_q\}$ .如果 $E\subset \mathbb {F}_q^d$ ,我们的主要结果表明,当集合 E 的大小满足 $|E| \geq C_k q^{d/2}$ 时,其中 $C_k$ 是一个完全取决于 k 的常数,那么就有可能在 E 中找到两个 $(k+1)$ 图元,使得其中一个图元相对于另一个图元扩张了 r,但只沿着 $|A|$ 边。更准确地说,我们确定在 E^{k+1}$ 中存在 $(x_1, \dots , x_{k+1}) \,在 E^{k+1}$ 中存在 $(y_1, \dots , y_{k+1}) \,这样,对于 $(i, j) \in A$ 、我们有 $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $ ,条件是 $x_i \neq x_j$ 和 $y_i \neq y_j$ for $1 \leq i <;j \leq k + 1$ 条件是 $|E| \geq C_k q^{d/2}$ 和 $r\in (\mathbb {F}_q)^2\setminus \{0\}$ 。我们为这一结果提供了两个不同的证明。第一个证明使用了群作用技术,这是解决此类问题的一种强有力的方法;第二个证明则基于基本的组合推理。此外,我们还证明了在维度 2 中,当 $q \equiv 3 \pmod 4$ 时,阈值 $d/2$ 是尖锐的。作为主要结果的推论,通过改变底层集合 A,我们确定了扩张 k 循环、k 路径和 k 星(其中 $k \geq 3$ )存在的阈值,其扩张比为 $r\in (\mathbb {F}_q)^2\setminus \{0\}$ 。这些结果改进并概括了 Xie 和 Ge 的发现['Some results on similar configurations in subsets of $\mathbb {F}_q^d$ ', Finite Fields Appl.91 (2023), Article no.102252, 20 pages].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信