Performance Assessment and Working Fluid Selection of the Novel Combined Helium Brayton Cycle and Organic Rankine Cycle Based on Solar Power Tower for Sustainable Generation
Yunis Khan, D. Apparao, Sandeep Gawande, Nagendra Singh, Yashwant Singh Bisht, Parminder Singh
{"title":"Performance Assessment and Working Fluid Selection of the Novel Combined Helium Brayton Cycle and Organic Rankine Cycle Based on Solar Power Tower for Sustainable Generation","authors":"Yunis Khan, D. Apparao, Sandeep Gawande, Nagendra Singh, Yashwant Singh Bisht, Parminder Singh","doi":"10.1007/s40997-023-00745-8","DOIUrl":null,"url":null,"abstract":"<p>Numerous irreversibilities exist in the solar subsection of solar power tower (SPT) plants, as was previously recognized, and cannot be prevented. Therefore, it is necessary to develop a new and efficient power generation unit to enhance the performance of the SPT plant. The unique combined cycle for SPT plant was developed in the current study. Working fluid helium was employed in the helium Brayton cycle (HBC), and the medium temperature organic Rankine cycle (ORC) was utilized for waste heat recovery. Using engineering equation solver software, the suggested system’s exergy and energy analysis was carried out. Additionally, a parametric study was performed to look into how important characteristics affected plant performance. Simultaneously, working fluid selection study has been performed for ORC. It was concluded that energy efficiency and network output were enhanced by 19.11% and 19.09%, respectively, by implementing ORC to the basic HBC system. The network output, exergy and energy efficiency of the plant (SPT-HBC-ORC) were obtained as 19,135 kW, 39.74% and 37.11%, respectively. The fluid R1233zd(E) was recommended as the thermodynamically best fluid. The current system performs better than supercritical CO<sub>2</sub> and the Rankine cycles based systems, according to a comparison with previous studies. Also, present developed solar power system is more efficient and easier to configure compared to previous research to generate the carbon free power.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"80 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00745-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous irreversibilities exist in the solar subsection of solar power tower (SPT) plants, as was previously recognized, and cannot be prevented. Therefore, it is necessary to develop a new and efficient power generation unit to enhance the performance of the SPT plant. The unique combined cycle for SPT plant was developed in the current study. Working fluid helium was employed in the helium Brayton cycle (HBC), and the medium temperature organic Rankine cycle (ORC) was utilized for waste heat recovery. Using engineering equation solver software, the suggested system’s exergy and energy analysis was carried out. Additionally, a parametric study was performed to look into how important characteristics affected plant performance. Simultaneously, working fluid selection study has been performed for ORC. It was concluded that energy efficiency and network output were enhanced by 19.11% and 19.09%, respectively, by implementing ORC to the basic HBC system. The network output, exergy and energy efficiency of the plant (SPT-HBC-ORC) were obtained as 19,135 kW, 39.74% and 37.11%, respectively. The fluid R1233zd(E) was recommended as the thermodynamically best fluid. The current system performs better than supercritical CO2 and the Rankine cycles based systems, according to a comparison with previous studies. Also, present developed solar power system is more efficient and easier to configure compared to previous research to generate the carbon free power.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.