The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping

{"title":"The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping","authors":"","doi":"10.1007/s00030-023-00909-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we derive suitable optimal <span> <span>\\(L^p-L^q\\)</span> </span> decay estimates, <span> <span>\\(1\\le p\\le 2\\le q\\le \\infty \\)</span> </span>, for the solutions to the <span> <span>\\(\\sigma \\)</span> </span>-evolution equation, <span> <span>\\(\\sigma &gt;1\\)</span> </span>, with scale-invariant time-dependent damping and power nonlinearity <span> <span>\\(|u|^p\\)</span> </span>, <span> <span>$$\\begin{aligned} u_{tt}+(-\\Delta )^\\sigma u + \\frac{\\mu }{1+t} u_t= |u|^{p}, \\quad t\\ge 0, \\quad x\\in {{\\mathbb {R}}}^n, \\end{aligned}$$</span> </span>where <span> <span>\\(\\mu &gt;0\\)</span> </span>, <span> <span>\\(p&gt;1\\)</span> </span>. The critical exponent <span> <span>\\(p=p_c\\)</span> </span> for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly <span> <span>\\(\\mu \\in (0, 1)\\)</span> </span> or <span> <span>\\(\\mu &gt;1\\)</span> </span>. Under the assumption of small initial data in <span> <span>\\(L^m({{\\mathbb {R}}}^n)\\cap L^2({{\\mathbb {R}}}^n), m=1,2\\)</span> </span>, we find the critical exponent at low space dimension <em>n</em> with respect to <span> <span>\\(\\sigma \\)</span> </span>, namely, <span> <span>$$\\begin{aligned} p_c= \\max \\left\\{ {{\\bar{p}}}(\\gamma _{m}), {{\\bar{p}}} (\\gamma _{m}+\\mu -1) \\right\\} , \\quad \\gamma _{m}{\\mathrm {\\,:=\\,}}\\frac{n}{m\\sigma }, \\quad \\mu &gt;1-\\gamma _m, \\end{aligned}$$</span> </span>where <span> <span>\\( {{\\bar{p}}}(\\gamma ){\\mathrm {\\,:=\\,}}1+ \\frac{2}{\\gamma }\\)</span> </span> is the well known Fujita exponent. Hence, <span> <span>\\(p_c={{\\bar{p}}}(\\gamma _{m})\\)</span> </span> if <span> <span>\\(\\mu &gt;1\\)</span> </span>, whereas <span> <span>\\(p_c={{\\bar{p}}} (\\gamma _{m}+\\mu -1)\\)</span> </span> is a shift of Fujita type exponent if <span> <span>\\(\\mu \\in (0, 1)\\)</span> </span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00909-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive suitable optimal \(L^p-L^q\) decay estimates, \(1\le p\le 2\le q\le \infty \) , for the solutions to the \(\sigma \) -evolution equation, \(\sigma >1\) , with scale-invariant time-dependent damping and power nonlinearity  \(|u|^p\) , $$\begin{aligned} u_{tt}+(-\Delta )^\sigma u + \frac{\mu }{1+t} u_t= |u|^{p}, \quad t\ge 0, \quad x\in {{\mathbb {R}}}^n, \end{aligned}$$ where  \(\mu >0\) , \(p>1\) . The critical exponent \(p=p_c\) for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly \(\mu \in (0, 1)\) or \(\mu >1\) . Under the assumption of small initial data in \(L^m({{\mathbb {R}}}^n)\cap L^2({{\mathbb {R}}}^n), m=1,2\) , we find the critical exponent at low space dimension n with respect to \(\sigma \) , namely, $$\begin{aligned} p_c= \max \left\{ {{\bar{p}}}(\gamma _{m}), {{\bar{p}}} (\gamma _{m}+\mu -1) \right\} , \quad \gamma _{m}{\mathrm {\,:=\,}}\frac{n}{m\sigma }, \quad \mu >1-\gamma _m, \end{aligned}$$ where \( {{\bar{p}}}(\gamma ){\mathrm {\,:=\,}}1+ \frac{2}{\gamma }\) is the well known Fujita exponent. Hence, \(p_c={{\bar{p}}}(\gamma _{m})\) if \(\mu >1\) , whereas \(p_c={{\bar{p}}} (\gamma _{m}+\mu -1)\) is a shift of Fujita type exponent if \(\mu \in (0, 1)\) .

一类具有随时间变化的阻尼的半线性演化方程的指数从藤田型指数到它的移动
Abstract In this paper, we derive suitable optimal \(L^p-L^q\) decay estimates, \(1\le p\le 2\le q\le \infty \) , for the solutions to the \(\sigma \) -evolution equation, \(\sigma >;1) ,具有尺度不变的随时间变化的阻尼和功率非线性 \(|u|^p\) 、 $$\begin{aligned} u_{tt}+(-\Delta )^\sigma u + \frac{\mu }{1+t} u_t= |u|^{p}, \quad t\ge 0, \quad x\in {{\mathbb {R}}}^n, \end{aligned}$$ 其中 \(\mu >;0) , \(p>1\) 。考奇问题小数据解的全局(时间)存在性的临界指数\(p=p_c\)与解的长时间行为有关,它相应地改变了\(\mu \in (0, 1)\) or\(\mu >1\) 。在 \(L^m({{\mathbb {R}}^n)\cap L^2({{\mathbb {R}}^n), m=1,2\) 小初始数据的假设下),我们就能找到低空间维度n下与(\sigma \)相关的临界指数,即:$$\begin{aligned} p_c= \max \left\{{{bar{p}}(\gamma _{m}), {{\bar{p}} (\gamma _{m}+\mu -1) \right\}, \quad \gamma _{m}{mathrm {\,:=\,}}\frac{n}{m\sigma }, \quad \mu >1-\gamma _m, \end{aligned}$$ where \( {{\bar{p}}(\gamma ){\mathrm {\,:=\,}}1+ \frac{2}{\gamma }\) 是众所周知的藤田指数。因此,如果 \(\mu >1\), \(p_c={{\bar{p}} (\gamma _{m}+\mu -1)\) 是藤田型指数的移动,如果 \(\mu\in (0, 1)\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信