Quantum Metrology Assisted by Machine Learning

Jiahao Huang, Min Zhuang, Jungeng Zhou, Yi Shen, Chaohong Lee
{"title":"Quantum Metrology Assisted by Machine Learning","authors":"Jiahao Huang, Min Zhuang, Jungeng Zhou, Yi Shen, Chaohong Lee","doi":"10.1002/qute.202300329","DOIUrl":null,"url":null,"abstract":"Quantum metrology aims to measure physical quantities based on fundamental quantum principles, enhancing measurement precision through resources like quantum entanglement and quantum correlations. This field holds promise for advancing quantum-enhanced sensors, including atomic clocks and magnetometers. However, practical constraints exist in the four fundamental steps of quantum metrology, including initialization, sensing, readout, and estimation. Valuable resources, such as coherence time, impose limitations on the performance of quantum sensors. Machine learning, enabling learning and prediction without explicit knowledge, provides a powerful tool in optimizing quantum metrology with limited resources. This article reviews the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum metrology aims to measure physical quantities based on fundamental quantum principles, enhancing measurement precision through resources like quantum entanglement and quantum correlations. This field holds promise for advancing quantum-enhanced sensors, including atomic clocks and magnetometers. However, practical constraints exist in the four fundamental steps of quantum metrology, including initialization, sensing, readout, and estimation. Valuable resources, such as coherence time, impose limitations on the performance of quantum sensors. Machine learning, enabling learning and prediction without explicit knowledge, provides a powerful tool in optimizing quantum metrology with limited resources. This article reviews the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning.

Abstract Image

机器学习辅助量子计量学
量子计量学旨在根据基本量子原理测量物理量,通过量子纠缠和量子关联等资源提高测量精度。这一领域有望推动量子增强传感器的发展,包括原子钟和磁力计。然而,在量子计量学的四个基本步骤(包括初始化、传感、读出和估计)中存在实际限制。相干时间等宝贵资源对量子传感器的性能造成了限制。机器学习能够在没有明确知识的情况下进行学习和预测,为利用有限资源优化量子计量学提供了有力工具。本文回顾了机器学习辅助量子计量学的基本原理、潜在应用和最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信