Zhaoxing Li, Kai Yang, Wei Ye, Jiaoyu Wang, Haiping Qiu, Hongkai Wang, Zhengguo Xu, Dejin Xie
{"title":"Rice leaf disease detection based on enhanced feature fusion and target adaptation","authors":"Zhaoxing Li, Kai Yang, Wei Ye, Jiaoyu Wang, Haiping Qiu, Hongkai Wang, Zhengguo Xu, Dejin Xie","doi":"10.1111/ppa.13866","DOIUrl":null,"url":null,"abstract":"Intelligent rice disease recognition methods based on deep neural networks can predict the degree of disease on the basis of, for example, the number of disease spots on an image, so that preventive measures can be taken. Currently, intelligent recognition methods for rice diseases suffer from the disadvantages of poor versatility and low accuracy. This paper uses eight common image classification networks to classify and identify four rice diseases. ResNet50 was selected as the feature extraction network and an enhanced feature fusion and target adaptive network (EFFTAN), referred to as EFFTAN, is proposed. The EFFTAN was used to detect four rice spot diseases in the rice leaf disease image samples dataset; the mean average precision of the final detection was 95.3%, and effective detection was also achieved for the dense spot features.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"227 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13866","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent rice disease recognition methods based on deep neural networks can predict the degree of disease on the basis of, for example, the number of disease spots on an image, so that preventive measures can be taken. Currently, intelligent recognition methods for rice diseases suffer from the disadvantages of poor versatility and low accuracy. This paper uses eight common image classification networks to classify and identify four rice diseases. ResNet50 was selected as the feature extraction network and an enhanced feature fusion and target adaptive network (EFFTAN), referred to as EFFTAN, is proposed. The EFFTAN was used to detect four rice spot diseases in the rice leaf disease image samples dataset; the mean average precision of the final detection was 95.3%, and effective detection was also achieved for the dense spot features.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.