{"title":"Prospects of Identifying Alternative Splicing Events from Single-Cell RNA Sequencing Data","authors":"Jiacheng Wang, Lei Yuan","doi":"10.2174/0115748936279561231214072041","DOIUrl":null,"url":null,"abstract":"Background: The advent of single-cell RNA sequencing (scRNA-seq) technology has offered unprecedented opportunities to unravel cellular heterogeneity and functions. Yet, despite its success in unraveling gene expression heterogeneity, accurately identifying and interpreting alternative splicing events from scRNA-seq data remains a formidable challenge. With advancing technology and algorithmic innovations, the prospect of accurately identifying alternative splicing events from scRNA-seq data is becoming increasingly promising Objective: This perspective aims to uncover the intricacies of splicing at the single-cell level and their potential implications for health and disease. It seeks to harness scRNA-seq's transformative power in revealing cell-specific alternative splicing dynamics and aims to propel our understanding of gene regulation within individual cells to new heights. Methods: The perspective grounds its method on recent literature along with the experimental protocols of single-cell RNA-seq and methods to identify and quantify the alternative splicing events from scRNA-seq data. Results: This perspective outlines the promising potential, challenges, and methodologies for leveraging different scRNA-seq technologies to identify and study alternative splicing events, with a focus on advancing our understanding of gene regulation at the single-cell level. Conclusion: This perspective explores the prospects of utilizing scRNA-seq data to identify and study alternative splicing events, highlighting their potential, challenges, methodologies, biological insights, and future directions.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936279561231214072041","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The advent of single-cell RNA sequencing (scRNA-seq) technology has offered unprecedented opportunities to unravel cellular heterogeneity and functions. Yet, despite its success in unraveling gene expression heterogeneity, accurately identifying and interpreting alternative splicing events from scRNA-seq data remains a formidable challenge. With advancing technology and algorithmic innovations, the prospect of accurately identifying alternative splicing events from scRNA-seq data is becoming increasingly promising Objective: This perspective aims to uncover the intricacies of splicing at the single-cell level and their potential implications for health and disease. It seeks to harness scRNA-seq's transformative power in revealing cell-specific alternative splicing dynamics and aims to propel our understanding of gene regulation within individual cells to new heights. Methods: The perspective grounds its method on recent literature along with the experimental protocols of single-cell RNA-seq and methods to identify and quantify the alternative splicing events from scRNA-seq data. Results: This perspective outlines the promising potential, challenges, and methodologies for leveraging different scRNA-seq technologies to identify and study alternative splicing events, with a focus on advancing our understanding of gene regulation at the single-cell level. Conclusion: This perspective explores the prospects of utilizing scRNA-seq data to identify and study alternative splicing events, highlighting their potential, challenges, methodologies, biological insights, and future directions.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.