{"title":"Multiwavelength observation of an active M-dwarf star EV Lacertae and its stellar flare accompanied by a delayed prominence eruption","authors":"Shun Inoue, Teruaki Enoto, Kosuke Namekata, Yuta Notsu, Satoshi Honda, Hiroyuki Maehara, Jiale Zhang, Hong-Peng Lu, Hiroyuki Uchida, Takeshi Go Tsuru, Daisaku Nogami, Kazunari Shibata","doi":"10.1093/pasj/psae001","DOIUrl":null,"url":null,"abstract":"We conducted four-night multiwavelength observations of an active M-dwarf star EV Lacertae on 2022 October 24–27 with simultaneous coverage of soft X-rays (NICER; 0.2–12 keV, Swift XRT; 0.2–10 keV), near-ultraviolet (Swift UVOT/UVW2; 1600–3500 Å), optical photometry (TESS; 6000–10000 Å), and optical spectroscopy (Nayuta/MALLS; 6350–6800 Å). During the campaign, we detected a flare starting at 12:28 UTC on October 25 with a white-light bolometric energy of 3.4 × 1032 erg. At about 1 h after this flare peak, our Hα spectrum showed a blueshifted excess component at a corresponding velocity of ∼100 km s−1. This may indicate that the prominence erupted with a 1 h delay of the flare peak. Furthermore, the simultaneous 20 s cadence near-ultraviolet (NUV) and white-light curves show gradual and rapid brightening behaviors during the rising phase at this flare. The ratio of flux in NUV to white light at the gradual brightening was ∼0.49, which may suggest that the temperature of the blackbody is low (<9000 K) or the maximum energy flux of a non-thermal electron beam is less than 5 × 1011 erg cm−2 s−1. Our simultaneous observations of the NUV and white-light flare raise the issue of a simple estimation of UV flux from optical continuum data by using a blackbody model.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psae001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted four-night multiwavelength observations of an active M-dwarf star EV Lacertae on 2022 October 24–27 with simultaneous coverage of soft X-rays (NICER; 0.2–12 keV, Swift XRT; 0.2–10 keV), near-ultraviolet (Swift UVOT/UVW2; 1600–3500 Å), optical photometry (TESS; 6000–10000 Å), and optical spectroscopy (Nayuta/MALLS; 6350–6800 Å). During the campaign, we detected a flare starting at 12:28 UTC on October 25 with a white-light bolometric energy of 3.4 × 1032 erg. At about 1 h after this flare peak, our Hα spectrum showed a blueshifted excess component at a corresponding velocity of ∼100 km s−1. This may indicate that the prominence erupted with a 1 h delay of the flare peak. Furthermore, the simultaneous 20 s cadence near-ultraviolet (NUV) and white-light curves show gradual and rapid brightening behaviors during the rising phase at this flare. The ratio of flux in NUV to white light at the gradual brightening was ∼0.49, which may suggest that the temperature of the blackbody is low (<9000 K) or the maximum energy flux of a non-thermal electron beam is less than 5 × 1011 erg cm−2 s−1. Our simultaneous observations of the NUV and white-light flare raise the issue of a simple estimation of UV flux from optical continuum data by using a blackbody model.
期刊介绍:
Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.