MULTIPLE SOLUTIONS FOR -LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZERO

Pub Date : 2024-01-29 DOI:10.1017/s0004972723001405
SHIBO LIU
{"title":"MULTIPLE SOLUTIONS FOR -LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZERO","authors":"SHIBO LIU","doi":"10.1017/s0004972723001405","DOIUrl":null,"url":null,"abstract":"We consider the Dirichlet problem for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline2.png\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian equations of the form <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} -\\Delta_{p(x)}u+b(x)\\vert u\\vert ^{p(x)-2}u=f(x,u),\\quad u\\in W_{0}^{1,p(x)}(\\Omega). \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> The odd nonlinearity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline3.png\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline4.png\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sublinear at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline5.png\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> but the related limit need not be uniform for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline6.png\" /> <jats:tex-math> $x\\in \\Omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Except being subcritical, no additional assumption is imposed on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline7.png\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline8.png\" /> <jats:tex-math> $|u|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline9.png\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Dirichlet problem for $p(x)$ -Laplacian equations of the form $$ \begin{align*} -\Delta_{p(x)}u+b(x)\vert u\vert ^{p(x)-2}u=f(x,u),\quad u\in W_{0}^{1,p(x)}(\Omega). \end{align*} $$ The odd nonlinearity $f(x,u)$ is $p(x)$ -sublinear at $u=0$ but the related limit need not be uniform for $x\in \Omega $ . Except being subcritical, no additional assumption is imposed on $f(x,u)$ for $|u|$ large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function $u=0$ .
分享
查看原文
非线性为零的-拉普拉斯方程的多重解
我们考虑形式为 $$ 的 $p(x)$ 拉普拉斯方程的 Dirichlet 问题。-\Delta_{p(x)}u+b(x)\vert uvert ^{p(x)-2}u=f(x,u),\quad u\in W_{0}^{1,p(x)}(\Omega).\end{align*}$$ 奇数非线性 $f(x,u)$ 在 $u=0$ 时是 $p(x)$ - 次线性的,但对于 $x\in \Omega $ 而言,相关极限不一定是均匀的。除了是次临界外,在 $|u|$ 较大时,对 $f(x,u)$没有额外的假设。通过应用克拉克定理和截断方法,我们得到了一系列具有负能量并接近零函数 $u=0$ 的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信