Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jingyu Zhong, Zhiyuan Wu, Lingyun Wang, Yong Chen, Yihan Xia, Lan Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Jianxing Feng, Haipeng Dong, Huan Zhang, Weiwu Yao
{"title":"Impacts of Adaptive Statistical Iterative Reconstruction-V and Deep Learning Image Reconstruction Algorithms on Robustness of CT Radiomics Features: Opportunity for Minimizing Radiomics Variability Among Scans of Different Dose Levels","authors":"Jingyu Zhong, Zhiyuan Wu, Lingyun Wang, Yong Chen, Yihan Xia, Lan Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Jianxing Feng, Haipeng Dong, Huan Zhang, Weiwu Yao","doi":"10.1007/s10278-023-00901-1","DOIUrl":null,"url":null,"abstract":"<p>This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calculated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of features with ICC &gt; 0.90 and CCC &gt; 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increasing strength level of DLIR. The average percentage of features with ICC &gt; 0.90 and CCC &gt; 0.90 in reference to FBP images was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing radiomics variability due to dose reduction.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00901-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the influence of adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) on CT radiomics feature robustness. A standardized phantom was scanned under single-energy CT (SECT) and dual-energy CT (DECT) modes at standard and low (20 and 10 mGy) dose levels. Images of SECT 120 kVp and corresponding DECT 120 kVp-like virtual monochromatic images were generated with filtered back-projection (FBP), ASIR-V at 40% (AV-40) and 100% (AV-100) blending levels, and DLIR algorithm at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) strength levels. Ninety-four features were extracted via Pyradiomics. Reproducibility of features was calculated between standard and low dose levels, between reconstruction algorithms in reference to FBP images, and within scan mode, using intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The average percentage of features with ICC > 0.90 and CCC > 0.90 between the two dose levels was 21.28% and 20.75% in AV-40 images, and 39.90% and 35.11% in AV-100 images, respectively, and increased from 15.43 to 45.22% and from 15.43 to 44.15% with an increasing strength level of DLIR. The average percentage of features with ICC > 0.90 and CCC > 0.90 in reference to FBP images was 26.07% and 25.80% in AV-40 images, and 18.88% and 18.62% in AV-100 images, respectively, and decreased from 27.93 to 17.82% and from 27.66 to 17.29% with an increasing strength level of DLIR. DLIR and ASIR-V algorithms showed low reproducibility in reference to FBP images, while the high-strength DLIR algorithm provides an opportunity for minimizing radiomics variability due to dose reduction.

Abstract Image

自适应统计迭代重建-V 和深度学习图像重建算法对 CT 放射组学特征鲁棒性的影响:最大限度降低不同剂量水平扫描的放射组学变异性的机会
本研究旨在探讨自适应统计迭代重建-V(ASIR-V)和深度学习图像重建(DLIR)对 CT 放射组学特征鲁棒性的影响。在标准和低剂量(20 mGy 和 10 mGy)水平下,以单能量 CT (SECT) 和双能量 CT (DECT) 模式扫描标准化模型。利用滤波后投影(FBP)、40%(AV-40)和 100%(AV-100)混合水平的 ASIR-V 以及低(DLIR-L)、中(DLIR-M)和高(DLIR-H)强度水平的 DLIR 算法生成 SECT 120 kVp 图像和相应的 DECT 120 kVp-like 虚拟单色图像。通过 Pyradiomics 提取了 94 个特征。使用类内相关系数(ICC)和一致性相关系数(CCC)计算了标准剂量水平和低剂量水平之间、参照 FBP 图像的重建算法之间以及扫描模式内部的特征再现性。在两个剂量水平之间,ICC > 0.90 和 CCC > 0.90 的特征平均百分比在 AV-40 图像中分别为 21.28% 和 20.75%,在 AV-100 图像中分别为 39.90% 和 35.11%,并且随着 DLIR 强度水平的增加,ICC > 0.90 和 CCC > 0.90 的特征平均百分比分别从 15.43% 增加到 45.22%,从 15.43% 增加到 44.15%。参照 FBP 图像,ICC > 0.90 和 CCC > 0.90 的平均特征百分比在 AV-40 图像中分别为 26.07% 和 25.80%,在 AV-100 图像中分别为 18.88% 和 18.62%,随着 DLIR 强度的增加,分别从 27.93% 降至 17.82% 和从 27.66% 降至 17.29%。DLIR和ASIR-V算法在参考FBP图像时显示出较低的可重复性,而高强度DLIR算法则提供了一个机会,可最大限度地减少因剂量减少而导致的放射组学变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信