Image Segmentation Using Bayesian Inference for Convex Variant Mumford–Shah Variational Model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xu Xiao, Youwei Wen, Raymond Chan, Tieyong Zeng
{"title":"Image Segmentation Using Bayesian Inference for Convex Variant Mumford–Shah Variational Model","authors":"Xu Xiao, Youwei Wen, Raymond Chan, Tieyong Zeng","doi":"10.1137/23m1545379","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 248-272, March 2024. <br/> Abstract. The Mumford–Shah model is a classical segmentation model, but its objective function is nonconvex. The smoothing and thresholding (SaT) approach is a convex variant of the Mumford–Shah model, which seeks a smoothed approximation solution to the Mumford–Shah model. The SaT approach separates the segmentation into two stages: first, a convex energy function is minimized to obtain a smoothed image; then, a thresholding technique is applied to segment the smoothed image. The energy function consists of three weighted terms and the weights are called the regularization parameters. Selecting appropriate regularization parameters is crucial to achieving effective segmentation results. Traditionally, the regularization parameters are chosen by trial-and-error, which is a very time-consuming procedure and is not practical in real applications. In this paper, we apply a Bayesian inference approach to infer the regularization parameters and estimate the smoothed image. We analyze the convex variant Mumford–Shah variational model from a statistical perspective and then construct a hierarchical Bayesian model. A mean field variational family is used to approximate the posterior distribution. The variational density of the smoothed image is assumed to have a Gaussian density, and the hyperparameters are assumed to have Gamma variational densities. All the parameters in the Gaussian density and Gamma densities are iteratively updated. Experimental results show that the proposed approach is capable of generating high-quality segmentation results. Although the proposed approach contains an inference step to estimate the regularization parameters, it requires less CPU running time to obtain the smoothed image than previous methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1545379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 248-272, March 2024.
Abstract. The Mumford–Shah model is a classical segmentation model, but its objective function is nonconvex. The smoothing and thresholding (SaT) approach is a convex variant of the Mumford–Shah model, which seeks a smoothed approximation solution to the Mumford–Shah model. The SaT approach separates the segmentation into two stages: first, a convex energy function is minimized to obtain a smoothed image; then, a thresholding technique is applied to segment the smoothed image. The energy function consists of three weighted terms and the weights are called the regularization parameters. Selecting appropriate regularization parameters is crucial to achieving effective segmentation results. Traditionally, the regularization parameters are chosen by trial-and-error, which is a very time-consuming procedure and is not practical in real applications. In this paper, we apply a Bayesian inference approach to infer the regularization parameters and estimate the smoothed image. We analyze the convex variant Mumford–Shah variational model from a statistical perspective and then construct a hierarchical Bayesian model. A mean field variational family is used to approximate the posterior distribution. The variational density of the smoothed image is assumed to have a Gaussian density, and the hyperparameters are assumed to have Gamma variational densities. All the parameters in the Gaussian density and Gamma densities are iteratively updated. Experimental results show that the proposed approach is capable of generating high-quality segmentation results. Although the proposed approach contains an inference step to estimate the regularization parameters, it requires less CPU running time to obtain the smoothed image than previous methods.
利用贝叶斯推理进行凸变孟福德-沙赫变分模型的图像分割
SIAM 影像科学杂志》,第 17 卷第 1 期,第 248-272 页,2024 年 3 月。 摘要Mumford-Shah 模型是一种经典的分割模型,但其目标函数是非凸的。平滑和阈值(SaT)方法是 Mumford-Shah 模型的凸变体,它寻求 Mumford-Shah 模型的平滑近似解。SaT 方法将分割分为两个阶段:首先,最小化凸能函数以获得平滑图像;然后,应用阈值技术分割平滑图像。能量函数由三个加权项组成,加权项称为正则化参数。选择合适的正则化参数对于获得有效的分割结果至关重要。传统上,正则化参数是通过试错来选择的,这是一个非常耗时的过程,在实际应用中并不实用。在本文中,我们采用贝叶斯推理方法来推断正则化参数并估计平滑图像。我们从统计学角度分析了凸变体 Mumford-Shah 变分模型,然后构建了一个分层贝叶斯模型。我们使用均值场变异族来近似后验分布。平滑图像的变分密度假定为高斯密度,超参数假定为伽马变分密度。高斯密度和伽玛密度中的所有参数都会进行迭代更新。实验结果表明,所提出的方法能够生成高质量的分割结果。虽然建议的方法包含一个推理步骤来估计正则化参数,但与以前的方法相比,它获得平滑图像所需的 CPU 运行时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信