Splitting of conditional expectations and liftings in product spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Kazimierz Musiał
{"title":"Splitting of conditional expectations and liftings in product spaces","authors":"Kazimierz Musiał","doi":"10.1007/s11117-023-01027-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((X, {{\\mathfrak {A}}},P)\\)</span> and <span>\\((Y, {{\\mathfrak {B}}},Q)\\)</span> be two probability spaces and <i>R</i> be their skew product on the product <span>\\(\\sigma \\)</span>-algebra <span>\\({{\\mathfrak {A}}}\\otimes {{\\mathfrak {B}}}\\)</span>. Moreover, let <span>\\(\\{({{\\mathfrak {A}}}_y,S_y):y\\in {Y}\\}\\)</span> be a <i>Q</i>-disintegration of <i>R</i> (if <span>\\({{\\mathfrak {A}}}_y={{\\mathfrak {A}}}\\)</span> for every <span>\\(y\\in {Y}\\)</span>, then we have a regular conditional probability on <span>\\({{\\mathfrak {A}}}\\)</span> with respect to <i>Q</i>) and let <span>\\({{\\mathfrak {C}}}\\)</span> be a sub-<span>\\(\\sigma \\)</span>-algebra of <span>\\({{\\mathfrak {A}}}\\cap \\bigcap _{y\\in {Y}}{{\\mathfrak {A}}}_y\\)</span>. We prove that if <span>\\(f\\in {{\\mathcal {L}}}^{\\infty }(R)\\)</span> and <span>\\({{\\mathbb {E}}}_{{{\\mathfrak {C}}}\\otimes {{\\mathfrak {B}}}}(f)\\)</span> is the conditional expectation of <i>f</i> with respect to <span>\\({{\\mathfrak {C}}}\\otimes {{\\mathfrak {B}}}\\)</span>, then for <i>Q</i>-almost every <span>\\(y\\in {Y}\\)</span> the <i>y</i>-section <span>\\([{{\\mathbb {E}}}_{{{\\mathfrak {C}}}\\otimes {{\\mathfrak {B}}}}(f)]^y\\)</span> is a version of the conditional expectation of <span>\\(f^y\\)</span> with respect <span>\\({{\\mathfrak {C}}}\\)</span> and <span>\\(S_y\\)</span>. Moreover there exist a lifting <span>\\(\\pi \\)</span> on <span>\\({{\\mathcal {L}}}^{\\infty }(\\widehat{R})\\)</span> (<span>\\(\\widehat{R}\\)</span> is the completion of <i>R</i>) and liftings <span>\\(\\sigma _y\\)</span> on <span>\\({{\\mathcal {L}}}^{\\infty }(\\widehat{S_y})\\)</span>, <span>\\(y\\in Y\\)</span>, such that </p><span>$$\\begin{aligned}{}[\\pi (f)]^y= \\sigma _y\\Bigl ([\\pi (f)]^y\\Bigr ) \\qquad \\hbox {for all} \\quad y\\in Y\\quad \\hbox {and}\\quad f\\in {{\\mathcal {L}}}^{\\infty }(\\widehat{R}). \\end{aligned}$$</span><p>Both results are generalizations of Strauss et al. (Ann Prob 32:2389–2408, 2004), where <span>\\({{\\mathfrak {A}}}\\)</span> was assumed to be separable in the Frechet-Nikodým pseudometric and of Macheras et al. (J Math Anal Appl 335:213–224, 2007), where <i>R</i> was assumed to be absolutely continuous with respect to the product measure <span>\\(P\\otimes {Q}\\)</span>. Finally a characterization of stochastic processes possessing an equivalent measurable version is presented.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-023-01027-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((X, {{\mathfrak {A}}},P)\) and \((Y, {{\mathfrak {B}}},Q)\) be two probability spaces and R be their skew product on the product \(\sigma \)-algebra \({{\mathfrak {A}}}\otimes {{\mathfrak {B}}}\). Moreover, let \(\{({{\mathfrak {A}}}_y,S_y):y\in {Y}\}\) be a Q-disintegration of R (if \({{\mathfrak {A}}}_y={{\mathfrak {A}}}\) for every \(y\in {Y}\), then we have a regular conditional probability on \({{\mathfrak {A}}}\) with respect to Q) and let \({{\mathfrak {C}}}\) be a sub-\(\sigma \)-algebra of \({{\mathfrak {A}}}\cap \bigcap _{y\in {Y}}{{\mathfrak {A}}}_y\). We prove that if \(f\in {{\mathcal {L}}}^{\infty }(R)\) and \({{\mathbb {E}}}_{{{\mathfrak {C}}}\otimes {{\mathfrak {B}}}}(f)\) is the conditional expectation of f with respect to \({{\mathfrak {C}}}\otimes {{\mathfrak {B}}}\), then for Q-almost every \(y\in {Y}\) the y-section \([{{\mathbb {E}}}_{{{\mathfrak {C}}}\otimes {{\mathfrak {B}}}}(f)]^y\) is a version of the conditional expectation of \(f^y\) with respect \({{\mathfrak {C}}}\) and \(S_y\). Moreover there exist a lifting \(\pi \) on \({{\mathcal {L}}}^{\infty }(\widehat{R})\) (\(\widehat{R}\) is the completion of R) and liftings \(\sigma _y\) on \({{\mathcal {L}}}^{\infty }(\widehat{S_y})\), \(y\in Y\), such that

$$\begin{aligned}{}[\pi (f)]^y= \sigma _y\Bigl ([\pi (f)]^y\Bigr ) \qquad \hbox {for all} \quad y\in Y\quad \hbox {and}\quad f\in {{\mathcal {L}}}^{\infty }(\widehat{R}). \end{aligned}$$

Both results are generalizations of Strauss et al. (Ann Prob 32:2389–2408, 2004), where \({{\mathfrak {A}}}\) was assumed to be separable in the Frechet-Nikodým pseudometric and of Macheras et al. (J Math Anal Appl 335:213–224, 2007), where R was assumed to be absolutely continuous with respect to the product measure \(P\otimes {Q}\). Finally a characterization of stochastic processes possessing an equivalent measurable version is presented.

乘积空间中的条件期望拆分和提升
让 \((X, {{\mathfrak {A}}},P)\) 和 \((Y, {{\mathfrak {B}}},Q)\) 是两个概率空间,R 是它们在乘积 \(\sigma \)-代数 \({{\mathfrak {A}}}\otimes {{\mathfrak {B}}\) 上的偏积。)此外,让 \({{({\mathfrak {A}}}_y,S_y):yin {Y}\}) 是 R 的 Q-分解(如果对于每一个 \(yin {Y}\) ,\({{mathfrak {A}}}_y={{mathfrak {A}}}\)、则我们在 \({{mathfrak {A}}} 上有一个关于 Q 的正则条件概率),并让\({{mathfrak {C}}} 是\({{mathfrak {A}}}}cap \bigcap _{y\in {Y}}{{\mathfrak {A}}}_y\) 的子(σ)代数。)我们证明,如果 \(f\in {{mathcal {L}}}^{infty }(R)\) 和 \({{mathbb {E}}}_{{{mathfrak {C}}}\otimes {{mathfrak {B}}}}(f)\) 是 f 关于 \({{mathfrak {C}}}\otimes {{mathfrak {B}}} 的条件期望、)那么对于Q-almost every \(y\in {Y}\)来说,y-section \([{{\mathbb {E}}}_{{{mathfrak {C}}}\otimes {{mathfrak {B}}}}(f)]^y\) 是 \(f^y\) 关于 \({{mathfrak {C}}}\) 和 \(S_y\) 的条件期望的一个版本。此外,在({\mathcal {L}}^{\infty }(\widehat{R})\) ((\(\widehat{R}\)是R的完成)上存在一个提升(pi),在({\mathcal {L}}}^{\infty }(\widehat{S_y})\) 上存在一个提升(sigma _y)、\(y\in Y\), such that $$\begin{aligned}{}[\pi (f)]^y= \sigma _y\Bigl ([\pi (f)]^y\Bigr )\quad /hbox {for all}\quad y\in Y\quad \hbox {and}\quad f\in {{mathcal {L}}}^{infty }(\widehat{R}).\这两个结果都是 Strauss 等人 (Ann Prob 32:2389-2408, 2004) 和 Macheras 等人 (J Math Anal Appl 335:213-224, 2007) 的概括,前者假定 \({{mathfrak {A}}) 在 Frechet-Nikodým 伪计量中是可分的,后者假定 R 相对于乘积度量 \(P\otimes {Q}\) 是绝对连续的。最后,还介绍了具有等效可测版本的随机过程的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信