{"title":"Study on mechanism of VIV causing limited amplitude vibration through LES for a 4:1 rectangular cylinder","authors":"Yuanyan Tang, Yi Hui, Ke Li","doi":"10.1016/j.euromechflu.2024.01.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Vortex-induced vibration (VIV) is characterized as a phenomenon of limited amplitude vibration. Understanding the basic nature and underlying mechanism of VIV is necessary for predicting the vibration amplitude. In this study, using Large Eddy Simulation<span> (LES) of forced vibration, a detailed investigation of the flow pattern and wind load during VIV of a 4:1 rectangular cylinder is conducted. The results indicate that both vibration amplitude (</span></span><em>y</em><sub>0</sub><em>/D</em>) and wind speed (<em>U</em><sub><em>R</em></sub><span>) significantly influence the flow pattern and wind load. Notably, an increase in vibration amplitude leads to a predominance of motion-induced force and a corresponding amplification of the fluctuating lift coefficient. Additionally, a decrease in the phase difference between lift force and displacement is observed, establishing this phase difference as a critical parameter for predicting vibration amplitude. Regarding wind speed, it is observed that as </span><em>U</em><sub><em>R</em></sub> increases, the predominance of motion-induced force diminishes, resulting in a concurrent decrease in the fluctuating lift coefficient. Upon further investigation into the work performed by various forces within a single vibration cycle, it has been determined that as the vibration amplitude escalates, the work of the lift force (energy input <em>W</em><sub><em>I</em></sub><span>) initially increases, then diminishes, whereas the work of the damping force (energy dissipation </span><em>W</em><sub><em>O</em></sub>) continuously rises. The intersection of these two trajectories signifies the point of energy equilibrium between input and output, thereby establishing the vibration amplitude of VIV. The predicted vibration amplitudes, grounded in this principle, have been corroborated by experimental results.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 192-205"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000207","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vortex-induced vibration (VIV) is characterized as a phenomenon of limited amplitude vibration. Understanding the basic nature and underlying mechanism of VIV is necessary for predicting the vibration amplitude. In this study, using Large Eddy Simulation (LES) of forced vibration, a detailed investigation of the flow pattern and wind load during VIV of a 4:1 rectangular cylinder is conducted. The results indicate that both vibration amplitude (y0/D) and wind speed (UR) significantly influence the flow pattern and wind load. Notably, an increase in vibration amplitude leads to a predominance of motion-induced force and a corresponding amplification of the fluctuating lift coefficient. Additionally, a decrease in the phase difference between lift force and displacement is observed, establishing this phase difference as a critical parameter for predicting vibration amplitude. Regarding wind speed, it is observed that as UR increases, the predominance of motion-induced force diminishes, resulting in a concurrent decrease in the fluctuating lift coefficient. Upon further investigation into the work performed by various forces within a single vibration cycle, it has been determined that as the vibration amplitude escalates, the work of the lift force (energy input WI) initially increases, then diminishes, whereas the work of the damping force (energy dissipation WO) continuously rises. The intersection of these two trajectories signifies the point of energy equilibrium between input and output, thereby establishing the vibration amplitude of VIV. The predicted vibration amplitudes, grounded in this principle, have been corroborated by experimental results.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.