Nonreciprocal macroscopic tripartite entanglement in atom-optomagnomechanical system

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Qianjun Zheng, Wenxue Zhong, Guangling Cheng, Aixi Chen
{"title":"Nonreciprocal macroscopic tripartite entanglement in atom-optomagnomechanical system","authors":"Qianjun Zheng,&nbsp;Wenxue Zhong,&nbsp;Guangling Cheng,&nbsp;Aixi Chen","doi":"10.1140/epjqt/s40507-024-00218-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate how to generate the nonreciprocal macroscopic tripartite entanglement among the atomic ensemble, ferrimagnetic magnon and mechanical oscillator in a hybrid atom-optomagnomechanical system, where an ensemble of two-level atoms and a yttrium iron garnet micro-bridge supporting the magnon and mechanical modes are placed in a spinning optical resonator driven by a laser field. The phonon being the quantum of the mechanical mode interacts with the magnon and the optical photon via magnetostriction and radiation pressure, respectively, and meanwhile the photon couples to the atomic ensemble. The results show that not only all bipartite entanglements but also the genuine tripartite entanglement among the atomic ensemble, magnon and phonon could be generated at the steady state. Moreover, the nonreciprocity of atom-magnon-phonon entanglement can be obtained with the aid of the optical Sagnac effect by spinning the resonator, in which the entanglement is present in a chosen driving direction but disappears in the other direction. The nonreciprocal macroscopic tripartite entanglement is robust against temperature and could be flexibly controlled by choosing the system parameters. Our work enriches the study of macroscopic multipartite quantum states, which may have potential applications in the development of quantum information storage and the construction of multi-node chiral quantum network.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00218-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00218-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate how to generate the nonreciprocal macroscopic tripartite entanglement among the atomic ensemble, ferrimagnetic magnon and mechanical oscillator in a hybrid atom-optomagnomechanical system, where an ensemble of two-level atoms and a yttrium iron garnet micro-bridge supporting the magnon and mechanical modes are placed in a spinning optical resonator driven by a laser field. The phonon being the quantum of the mechanical mode interacts with the magnon and the optical photon via magnetostriction and radiation pressure, respectively, and meanwhile the photon couples to the atomic ensemble. The results show that not only all bipartite entanglements but also the genuine tripartite entanglement among the atomic ensemble, magnon and phonon could be generated at the steady state. Moreover, the nonreciprocity of atom-magnon-phonon entanglement can be obtained with the aid of the optical Sagnac effect by spinning the resonator, in which the entanglement is present in a chosen driving direction but disappears in the other direction. The nonreciprocal macroscopic tripartite entanglement is robust against temperature and could be flexibly controlled by choosing the system parameters. Our work enriches the study of macroscopic multipartite quantum states, which may have potential applications in the development of quantum information storage and the construction of multi-node chiral quantum network.

原子-光磁机械系统中的非互惠宏观三方纠缠
我们研究了如何在原子-光磁-机械混合系统中产生原子团、铁磁性磁子和机械振荡器之间的非互惠宏观三方纠缠。在该系统中,两级原子团和支持磁子和机械模式的钇铁石榴石微桥被置于激光场驱动的旋转光学谐振器中。作为机械模式量子的声子分别通过磁致伸缩和辐射压力与磁子和光学光子相互作用,同时光子耦合到原子集合。结果表明,在稳定状态下,原子团、磁子和声子之间不仅能产生所有的二方纠缠,而且能产生真正的三方纠缠。此外,原子-磁子-声子纠缠的非互惠性可以通过旋转谐振器的光学萨格纳克效应来获得,其中纠缠在选定的驱动方向上存在,但在另一个方向上消失。非互惠的宏观三方纠缠对温度具有稳健性,并可通过选择系统参数灵活控制。我们的工作丰富了宏观多方量子态的研究,可能在量子信息存储的发展和多节点手性量子网络的构建中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信