Number of Solitons Emerged in the Initial Profile of Shallow Water Using Convolutional Neural Networks

IF 2.6 3区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhen Wang, Shikun Cui
{"title":"Number of Solitons Emerged in the Initial Profile of Shallow Water Using Convolutional Neural Networks","authors":"Zhen Wang, Shikun Cui","doi":"10.1007/s11424-024-3337-3","DOIUrl":null,"url":null,"abstract":"<p>The soliton resolution conjecture proposes that the initial value problem can evolve into a dispersion part and a soliton part. However, the problem of determining the number of solitons that form in a given initial profile remains unsolved, except for a few specific cases. In this paper, the authors use the deep learning method to predict the number of solitons in a given initial value of the Korteweg-de Vries (KdV) equation. By leveraging the analytical relationship between Asech<sup>2</sup>(<i>x</i>) initial values and the number of solitons, the authors train a Convolutional Neural Network (CNN) that can accurately identify the soliton count from spatio-temporal data. The trained neural network is capable of predicting the number of solitons with other given initial values without any additional assistance. Through extensive calculations, the authors demonstrate the effectiveness and high performance of the proposed method.</p>","PeriodicalId":50026,"journal":{"name":"Journal of Systems Science & Complexity","volume":"148 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science & Complexity","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1007/s11424-024-3337-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The soliton resolution conjecture proposes that the initial value problem can evolve into a dispersion part and a soliton part. However, the problem of determining the number of solitons that form in a given initial profile remains unsolved, except for a few specific cases. In this paper, the authors use the deep learning method to predict the number of solitons in a given initial value of the Korteweg-de Vries (KdV) equation. By leveraging the analytical relationship between Asech2(x) initial values and the number of solitons, the authors train a Convolutional Neural Network (CNN) that can accurately identify the soliton count from spatio-temporal data. The trained neural network is capable of predicting the number of solitons with other given initial values without any additional assistance. Through extensive calculations, the authors demonstrate the effectiveness and high performance of the proposed method.

利用卷积神经网络计算浅水初始剖面中出现的孤子数量
孤子解析猜想提出,初值问题可以演化为离散部分和孤子部分。然而,除了少数特定情况外,确定在给定初始剖面中形成的孤子数量的问题仍未解决。在本文中,作者使用深度学习方法来预测 Korteweg-de Vries(KdV)方程给定初始值中的孤子数量。通过利用 Asech2(x) 初始值与孤子数量之间的分析关系,作者训练了一个卷积神经网络(CNN),该网络可以从时空数据中准确识别孤子数量。训练好的神经网络能够预测其他给定初始值的孤子数量,而无需任何额外的辅助。通过大量计算,作者证明了所提方法的有效性和高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Systems Science & Complexity
Journal of Systems Science & Complexity 数学-数学跨学科应用
CiteScore
3.80
自引率
9.50%
发文量
90
审稿时长
6-12 weeks
期刊介绍: The Journal of Systems Science and Complexity is dedicated to publishing high quality papers on mathematical theories, methodologies, and applications of systems science and complexity science. It encourages fundamental research into complex systems and complexity and fosters cross-disciplinary approaches to elucidate the common mathematical methods that arise in natural, artificial, and social systems. Topics covered are: complex systems, systems control, operations research for complex systems, economic and financial systems analysis, statistics and data science, computer mathematics, systems security, coding theory and crypto-systems, other topics related to systems science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信