Locally free representations of quivers over commutative Frobenius algebras

Tamás Hausel, Emmanuel Letellier, Fernando Rodriguez-Villegas
{"title":"Locally free representations of quivers over commutative Frobenius algebras","authors":"Tamás Hausel, Emmanuel Letellier, Fernando Rodriguez-Villegas","doi":"10.1007/s00029-023-00914-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate locally free representations of a quiver <i>Q</i> over a commutative Frobenius algebra <span>\\(\\textrm{R}\\)</span> by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of <i>Q</i>. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of <i>Q</i> over <span>\\(\\textrm{R}\\)</span> equals the number of isomorphism classes of locally free absolutely indecomposable representations of <i>Q</i> over <span>\\(\\textrm{R}[t]/(t^2)\\)</span>. Using these results together with results of Geiss, Leclerc and Schröer we give, when <span>\\(\\textrm{k}\\)</span> is algebraically closed, a classification of pairs <span>\\((Q,\\textrm{R})\\)</span> such that the set of isomorphism classes of indecomposable locally free representations of <i>Q</i> over <span>\\(\\textrm{R}\\)</span> is finite. Finally when the representation is free of rank 1 at each vertex of <i>Q</i>, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of <i>Q</i> over the Frobenius algebra <span>\\(\\mathbb {F}_q[t]/(t^r)\\)</span>. We prove that they are polynomial in <i>q</i> and their generating function is rational and satisfies a functional equation.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00914-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra \(\textrm{R}\) by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over \(\textrm{R}\) equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over \(\textrm{R}[t]/(t^2)\). Using these results together with results of Geiss, Leclerc and Schröer we give, when \(\textrm{k}\) is algebraically closed, a classification of pairs \((Q,\textrm{R})\) such that the set of isomorphism classes of indecomposable locally free representations of Q over \(\textrm{R}\) is finite. Finally when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra \(\mathbb {F}_q[t]/(t^r)\). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation.

交换弗罗贝纽斯代数上四元组的局部自由表示
在本文中,我们通过算术傅立叶变换研究了交换弗罗本尼斯代数 \(\textrm{R}\)上四元组 Q 的局部自由表示。当基域有限时,我们证明固定秩的绝对不可分解局部自由表示的同构类的数量与 Q 的方向无关。我们还证明了 Q 在 \(\textrm{R}\)上的前投影代数的绝对不可分解的局部自由表示的同构类的数目等于 Q 在 \(\textrm{R}[t]/(t^2)\)上的绝对不可分解的局部自由表示的同构类的数目。利用这些结果以及盖斯(Geiss)、勒克莱尔(Leclerc)和施罗尔(Schröer)的结果,我们给出了当\(\textrm{k}\)在代数上是封闭的时候,成对的\((Q,\textrm{R})\)的分类,使得Q在\(\textrm{R}\)上的不可分解的局部自由表示的同构类集合是有限的。最后,当表示在 Q 的每个顶点上都是秩为 1 的自由表示时,我们研究了计算 Q 在弗罗贝尼斯代数 \(\mathbb {F}_q[t]/(t^r)\) 上绝对不可分解的局部自由表示的同构类数的函数。我们证明它们是 q 的多项式,它们的生成函数是有理的,并且满足一个函数方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信