q-Painlevé equations on cluster Poisson varieties via toric geometry

{"title":"q-Painlevé equations on cluster Poisson varieties via toric geometry","authors":"","doi":"10.1007/s00029-023-00906-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We provide a relation between the geometric framework for <em>q</em>-Painlevé equations and cluster Poisson varieties by using toric models of rational surfaces associated with <em>q</em>-Painlevé equations. We introduce the notion of seeds of <em>q</em>-Painlevé type by the negative semi-definiteness of symmetric bilinear forms associated with seeds, and classify the mutation equivalence classes of these seeds. This classification coincides with the classification of <em>q</em>-Painlevé equations given by Sakai. We realize <em>q</em>-Painlevé systems as automorphisms on cluster Poisson varieties associated with seeds of <em>q</em>-Painlevé type.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00906-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a relation between the geometric framework for q-Painlevé equations and cluster Poisson varieties by using toric models of rational surfaces associated with q-Painlevé equations. We introduce the notion of seeds of q-Painlevé type by the negative semi-definiteness of symmetric bilinear forms associated with seeds, and classify the mutation equivalence classes of these seeds. This classification coincides with the classification of q-Painlevé equations given by Sakai. We realize q-Painlevé systems as automorphisms on cluster Poisson varieties associated with seeds of q-Painlevé type.

通过环几何研究群泊松变体上的 q-Painlevé 方程
摘要 我们利用与 q-Painlevé 方程相关的有理曲面的环模型,提供了 q-Painlevé 方程的几何框架与簇泊松变种之间的关系。我们通过与种子相关的对称双线性形式的负半定义性引入了 q-Painlevé 型种子的概念,并对这些种子的突变等价类进行了分类。这一分类与酒井(Sakai)给出的 q-Painlevé 方程分类不谋而合。我们把 q-Painlevé 系统看作是与 q-Painlevé 类型种子相关的簇泊松变体上的自动形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信