{"title":"Recent progress on inverse design for integrated photonic devices: methodology and applications","authors":"Ruoyu Shen, Bingzhou Hong, Xiuyan Ren, Fenghe Yang, Wei Chu, Haiwen Cai, Weiping Huang","doi":"10.1117/1.jnp.18.010901","DOIUrl":null,"url":null,"abstract":"Photonic integrated circuits (PICs) have attracted great attention as promising platforms for high-data-rate communications and high-performance computing. For the PICs, photonic devices with compatible materials, compact footprint, high-performance, and sophisticated functionalities are necessary building blocks. Design optimization to implement such devices for target applications and requirements are of critical importance. In this respect, inverse design methods, including iterative optimizations and deep neural networks, have demonstrated significant advantages over the traditional simulation-based trial-and-error optimization approach. We provide an overview of the recent progress on the inverse designs for the integrated photonic devices. The principles and procedure of the inverse design methods are presented and discussed, followed by a summary of the methods employed for specific integrated photonic devices in different integrated photonics material platforms. Finally, topics of future applications and fabrication constraints for the inverse design methods are discussed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.010901","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photonic integrated circuits (PICs) have attracted great attention as promising platforms for high-data-rate communications and high-performance computing. For the PICs, photonic devices with compatible materials, compact footprint, high-performance, and sophisticated functionalities are necessary building blocks. Design optimization to implement such devices for target applications and requirements are of critical importance. In this respect, inverse design methods, including iterative optimizations and deep neural networks, have demonstrated significant advantages over the traditional simulation-based trial-and-error optimization approach. We provide an overview of the recent progress on the inverse designs for the integrated photonic devices. The principles and procedure of the inverse design methods are presented and discussed, followed by a summary of the methods employed for specific integrated photonic devices in different integrated photonics material platforms. Finally, topics of future applications and fabrication constraints for the inverse design methods are discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.