{"title":"Tensor product of representations of quivers","authors":"Pradeep Das , Umesh V. Dubey , N. Raghavendra","doi":"10.1016/j.indag.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we define the tensor product <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> of a representation <span><math><mi>V</mi></math></span> of a quiver <span><math><mi>Q</mi></math></span> with a representation <span><math><mi>W</mi></math></span> of an another quiver <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and show that the representation <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> is semistable if <span><math><mi>V</mi></math></span> and <span><math><mi>W</mi></math></span> are semistable. We give a relation between the universal representations on the fine moduli spaces <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> of representations of <span><math><mrow><mi>Q</mi><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span><span> respectively over arbitrary algebraically closed fields<span>. We further describe a relation between the natural line bundles on these moduli spaces when the base is the field of complex numbers. We then prove that the internal product </span></span><span><math><mrow><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span> of covering quivers is a sub-quiver of the covering quiver <span><math><mover><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. We deduce the relation between stability of the representations <span><math><mover><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> denotes the lift of the representation <span><math><mi>V</mi></math></span> of <span><math><mi>Q</mi></math></span> to the covering quiver <span><math><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. We also lift the relation between the natural line bundles on the product of moduli spaces <span><math><mrow><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover><mo>×</mo><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 329-349"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we define the tensor product of a representation of a quiver with a representation of an another quiver , and show that the representation is semistable if and are semistable. We give a relation between the universal representations on the fine moduli spaces and of representations of and respectively over arbitrary algebraically closed fields. We further describe a relation between the natural line bundles on these moduli spaces when the base is the field of complex numbers. We then prove that the internal product of covering quivers is a sub-quiver of the covering quiver . We deduce the relation between stability of the representations and , where denotes the lift of the representation of to the covering quiver . We also lift the relation between the natural line bundles on the product of moduli spaces .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.