{"title":"A theoretical study on gaseous pollutant flushing of natural ventilation driven by buoyancy forces in industrial buildings","authors":"Jiawei Zhuang, Genyang Chen, Rumeng Yang, Kun Han, Dongdong Tian, Yongfa Diao, Henggen Shen","doi":"10.1007/s12273-023-1092-3","DOIUrl":null,"url":null,"abstract":"<p>The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years. Natural ventilation can improve indoor air quality (IAQ) and reduce carbon emissions. To evaluate gaseous pollutant levels in industrial buildings for the development of buoyancy-driven natural ventilation, two theoretical models of pollutant flushing (Model I and Model II) are developed based on the existing thermal stratification theory in combination with the mixing characteristics of lower pollutant. The results show that indoor pollutant flushing is mainly dependent on the pollution source intensity and effective ventilation area. The mixing characteristics of lower pollutant has an important effect on pollutant stratification and evolution during ventilation, but it does not change the prediction results at steady state. When the dimensionless pollution source intensity is larger than 1, the pollution source should be cleaned up or other ventilation methods should be used instead to improve IAQ. In addition, the comparisons between Model I and Model II on instantaneous pollutant concentration are significantly influenced by the pollution source intensity, and the actual pollutant concentration is more likely to be between the predicted values of Model I and Model II. To reduce pollutant concentration to a required level, the pollution source intensity should be in a certain range. The theoretical models as well as the necessary conditions for ventilation effectiveness obtained can be used for the ventilation optimization design of industrial buildings.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"8 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-023-1092-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The acceleration of industrialization worsening indoor environments of industrial buildings has drawn more attention in recent years. Natural ventilation can improve indoor air quality (IAQ) and reduce carbon emissions. To evaluate gaseous pollutant levels in industrial buildings for the development of buoyancy-driven natural ventilation, two theoretical models of pollutant flushing (Model I and Model II) are developed based on the existing thermal stratification theory in combination with the mixing characteristics of lower pollutant. The results show that indoor pollutant flushing is mainly dependent on the pollution source intensity and effective ventilation area. The mixing characteristics of lower pollutant has an important effect on pollutant stratification and evolution during ventilation, but it does not change the prediction results at steady state. When the dimensionless pollution source intensity is larger than 1, the pollution source should be cleaned up or other ventilation methods should be used instead to improve IAQ. In addition, the comparisons between Model I and Model II on instantaneous pollutant concentration are significantly influenced by the pollution source intensity, and the actual pollutant concentration is more likely to be between the predicted values of Model I and Model II. To reduce pollutant concentration to a required level, the pollution source intensity should be in a certain range. The theoretical models as well as the necessary conditions for ventilation effectiveness obtained can be used for the ventilation optimization design of industrial buildings.
近年来,随着工业化进程的加快,工业建筑的室内环境日益恶化,引起了越来越多的关注。自然通风可以改善室内空气质量(IAQ),减少碳排放。为了评估工业建筑中的气态污染物水平,以发展浮力驱动的自然通风,基于现有的热分层理论,结合低等污染物的混合特性,建立了两个污染物冲刷理论模型(模型 I 和模型 II)。结果表明,室内污染物冲刷主要取决于污染源强度和有效通风面积。下层污染物的混合特性对通风过程中污染物的分层和演变有重要影响,但不会改变稳态时的预测结果。当无量纲污染源强度大于 1 时,应清理污染源或采用其他通风方式来改善室内空气质量。此外,模型 I 和模型 II 对瞬时污染物浓度的比较受到污染源强度的显著影响,实际污染物浓度更有可能介于模型 I 和模型 II 的预测值之间。要将污染物浓度降至所需水平,污染源强度应在一定范围内。所得到的理论模型以及通风效果的必要条件可用于工业建筑的通风优化设计。
期刊介绍:
Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.