On a Chemotactic Host–Pathogen Model: Boundedness, Aggregation, and Segregation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Guodong Liu, Hao Wang, Xiaoyan Zhang
{"title":"On a Chemotactic Host–Pathogen Model: Boundedness, Aggregation, and Segregation","authors":"Guodong Liu, Hao Wang, Xiaoyan Zhang","doi":"10.1007/s00332-023-10010-6","DOIUrl":null,"url":null,"abstract":"<p>This study formulates a host–pathogen model driven by cross-diffusion to examine the effect of chemotaxis on solution dynamics and spatial structures. The negative binomial incidence mechanism is incorporated to illustrate the transmission process by pathogens. In terms of the magnitude of chemotaxis, the global solvability of the model is extensively studied by employing semigroup methods, loop arguments, and energy estimates. In a limiting case, the necessary conditions for chemotaxis-driven instability are established regarding the degree of chemotactic attraction. Spatial aggregation may occur along strong chemotaxis in a two-dimensional domain due to solution explosion. We further observe that spatial segregation appears for short-lived free pathogens in a one-dimensional domain, whereas strong chemotactic repulsion homogenizes the infected hosts and thus fails to segregate host groups effectively.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-10010-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study formulates a host–pathogen model driven by cross-diffusion to examine the effect of chemotaxis on solution dynamics and spatial structures. The negative binomial incidence mechanism is incorporated to illustrate the transmission process by pathogens. In terms of the magnitude of chemotaxis, the global solvability of the model is extensively studied by employing semigroup methods, loop arguments, and energy estimates. In a limiting case, the necessary conditions for chemotaxis-driven instability are established regarding the degree of chemotactic attraction. Spatial aggregation may occur along strong chemotaxis in a two-dimensional domain due to solution explosion. We further observe that spatial segregation appears for short-lived free pathogens in a one-dimensional domain, whereas strong chemotactic repulsion homogenizes the infected hosts and thus fails to segregate host groups effectively.

Abstract Image

关于趋化性宿主-病原体模型:边界、聚集和隔离
本研究建立了一个由交叉扩散驱动的宿主-病原体模型,以研究趋化对溶液动力学和空间结构的影响。模型采用负二项入射机制来说明病原体的传播过程。就趋化的程度而言,通过采用半群方法、循环论证和能量估计,对模型的全局可解性进行了广泛研究。在极限情况下,就趋化吸引的程度确定了趋化驱动不稳定性的必要条件。在二维领域中,由于溶液爆炸,强趋化作用可能会导致空间聚集。我们进一步观察到,在一维域中,短寿命的游离病原体会出现空间分隔,而强趋化排斥则会使受感染的宿主均匀化,从而无法有效分隔宿主群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信