{"title":"A fast primal-dual algorithm via dynamical system with variable mass for linearly constrained convex optimization","authors":"Ziyi Jiang, Dan Wang, Xinwei Liu","doi":"10.1007/s11590-023-02091-9","DOIUrl":null,"url":null,"abstract":"<p>We aim to solve the linearly constrained convex optimization problem whose objective function is the sum of a differentiable function and a non-differentiable function. We first propose an inertial continuous primal-dual dynamical system with variable mass for linearly constrained convex optimization problems with differentiable objective functions. The dynamical system is composed of a second-order differential equation with variable mass for the primal variable and a first-order differential equation for the dual variable. The fast convergence properties of the proposed dynamical system are proved by constructing a proper energy function. We then extend the results to the case where the objective function is non-differentiable, and a new accelerated primal-dual algorithm is presented. When both variable mass and time scaling satisfy certain conditions, it is proved that our new algorithm owns fast convergence rates for the objective function residual and the feasibility violation. Some preliminary numerical results on the <span>\\(\\ell _{1}\\)</span>–<span>\\(\\ell _{2}\\)</span> minimization problem demonstrate the validity of our algorithm.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02091-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We aim to solve the linearly constrained convex optimization problem whose objective function is the sum of a differentiable function and a non-differentiable function. We first propose an inertial continuous primal-dual dynamical system with variable mass for linearly constrained convex optimization problems with differentiable objective functions. The dynamical system is composed of a second-order differential equation with variable mass for the primal variable and a first-order differential equation for the dual variable. The fast convergence properties of the proposed dynamical system are proved by constructing a proper energy function. We then extend the results to the case where the objective function is non-differentiable, and a new accelerated primal-dual algorithm is presented. When both variable mass and time scaling satisfy certain conditions, it is proved that our new algorithm owns fast convergence rates for the objective function residual and the feasibility violation. Some preliminary numerical results on the \(\ell _{1}\)–\(\ell _{2}\) minimization problem demonstrate the validity of our algorithm.
期刊介绍:
Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published.
Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field.
Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.